US20050178752A1 - Method and device for correcting pattern film on a semiconductor substrate - Google Patents

Method and device for correcting pattern film on a semiconductor substrate Download PDF

Info

Publication number
US20050178752A1
US20050178752A1 US11/098,380 US9838005A US2005178752A1 US 20050178752 A1 US20050178752 A1 US 20050178752A1 US 9838005 A US9838005 A US 9838005A US 2005178752 A1 US2005178752 A1 US 2005178752A1
Authority
US
United States
Prior art keywords
substrate
gas
laser light
laser
pattern film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/098,380
Inventor
Yukio Morishige
Makoto Oomiya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laserfront Technologies Inc
Original Assignee
Laserfront Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laserfront Technologies Inc filed Critical Laserfront Technologies Inc
Priority to US11/098,380 priority Critical patent/US20050178752A1/en
Publication of US20050178752A1 publication Critical patent/US20050178752A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/483Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using coherent light, UV to IR, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/047Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/72Repair or correction of mask defects

Definitions

  • This invention relates to correction of pattern on a semiconductor substrate and, particularly, on a semiconductor photo mask.
  • a semiconductor photo mask is used for exposing a circuit pattern on a wafer in a manufacturing process of a semiconductor device, a liquid crystal display device, etc.
  • a semiconductor photo mask is a transparent substrate on that a minute pattern film, which is an opaque film, is formed.
  • a white defect or a clear defect at which a part of the pattern film is lost and a black defect or an opaque defect at which the substrate is unnecessarily covered with film.
  • laser CVD chemical vapor deposition
  • material gas including chromium For correcting white defects on a semiconductor photo mask, laser CVD (chemical vapor deposition) is available.
  • laser CVD laser light is irradiated at the white defects on the substrate in material gas including chromium.
  • Laser light thermally resolves material gas around the white defects and as a result, film including chromium grows over the white defects.
  • JP-B Japanese Patent number
  • JP-B Japanese Patent number
  • an optical system for laser irradiator/laser microscope which includes laser light source and a unit for irradiation/observation, is arranged above the substrate set in material gas.
  • the optical system downward irradiates laser light at white defects on the substrate.
  • the optical system shapes laser light by its slit and projects a pattern on the substrate. As a result, the optical system corrects white defects precisely.
  • black defects namely unnecessary part of pattern film, is conventionally vaporized to correct a semiconductor photo mask by irradiating laser light on the part.
  • JP-A Japanese Unexamined Patent Publication (JP-A) number H7-104459, namely 104459/1995 is titled “Method and apparatus for correcting defects on a photo mask”, which is hereinafter referred to as second conventional technique.
  • second conventional technique first, pattern film is printed on one surface of transparent substrate. Next, the substrate is laid on the surface. Then, laser light is irradiated from the other surface through the substrate at black defects to vaporize the black defects. Since the former surface faces downward, particles generated when the black defects are vaporized drop down, and therefore, are not stuck on the former surface.
  • the first conventional technique laser light is irradiated down at white defects on a substrate to form the pattern film covering the white defects.
  • Laser CVD generates particles from decomposed material gas. The particles in the air fall down and are struck again around the area at which laser light has been irradiated on the substrate. From the struck particles, CVD forms unnecessary film on the substrate. As a result, edge of the pattern film swells up on border of the mask pattern.
  • the first conventional technique has less precision.
  • the surface of the substrate on which laser light is irradiated faces downward, and consequently, most particles generated by laser light fall down.
  • 0.1 ⁇ m or smaller particles often stick on the substrate again and cause a decline of transmittance around the area at which laser light has been irradiated.
  • the decline of transmittance seriously affects the newest apparatus for correcting photo mask in 0.13 ⁇ m rule, which corresponds to 0.5 ⁇ m rule on its original photo mask.
  • the method comprises the steps of: holding the substrate with the surface facing downward; irradiating laser light upward at a white defect on the surface; blowing material gas for forming pattern film to the surface; and forming pattern film over the white defect.
  • the method may further comprise the steps of: irradiating laser light upward at a black defect on the surface; and vaporizing unnecessary part of pattern film in order to correct the black defect.
  • the method may further comprise the steps of: blowing oxygen gas to the surface; irradiating first laser light upward to unnecessary part of pattern film on the surface in order to oxidize the top layer of the part; irradiating second laser light upward to the oxidized top layer in order to peel the oxidized top layer off; and repeating the steps of irradiating first and second laser light in order to eliminate the unnecessary part of pattern film.
  • the step of blowing may further blow purge gas, which prevents a window for conducting laser light from clouding, and carrier gas, which is included in CVD gas for carrying material gas; and the main component of the purge and carrier gases may be helium gas.
  • the substrate may be sucked in order to be held at the step of holding.
  • the device comprises: a holder for holding the substrate with the surface facing downward; a laser irradiator for irradiating laser light upward at a white defect on the surface; a gas circulatory unit for providing and withdrawing gas including material gas; a gas window for blowing material gas on the surface and conducting laser light from the laser source through the gas window to the white defect in order to form pattern film over the white defect.
  • the device may further comprise an optical unit for observing pattern film on the substrate.
  • the substrate may be permeable to light and the device further may comprise a penetrating light source for irradiating light through the substrate to the lower surface of the substrate in order to illuminate with the lower surface.
  • the sucking unit may comprise a top cover permeable to light
  • the penetrating light source may comprise a lens that is designed to compensate the distortion of the lens with reference to the total thickness of the cover and the substrate.
  • the laser irradiator may comprise first laser source for irradiating first laser light for vaporizing pattern film, and second laser source for irradiating second laser light for laser CVD.
  • first laser light is irradiated through the gas window at black defects in order to vaporize the black defects.
  • the second laser light is irradiated through the gas window at white defects with material gas provided by the gas circulatory unit in order to form film over the white defects.
  • the gas circulatory unit may provide purge gas, which prevents a window for conducting laser light from clouding, and carrier gas, which is included in CVD gas for carrying material gas.
  • the main component of the purge and carrier gases is helium gas.
  • the holder may suck the substrate in order to hold the substrate.
  • FIG. 1 shows a block diagram for use in describing a pattern-correcting device of the present invention
  • FIG. 2 shows a sectional view for use in describing the gas window 6 of the present invention.
  • FIG. 3 shows a sectional view for use in describing the sucking unit 9 of the present invention.
  • first laser source provides laser light for vaporizing film, namely for correcting black defects and includes Nd:YVO4 laser which generates laser light in pulse width 0.8 ns, wavelength 355 nm and oscillation frequency 3 Hz.
  • Second laser source provides laser light for laser CVD, namely for correcting white defects and includes Nd:YLF laser which generates laser light in pulse width 30 ns, wavelength 349 nm and oscillation frequency 7 Hz.
  • a laser irradiator/microscope optical unit 3 irradiates laser light generated by the laser sources 1 and 2 to a lower surface of a substrate 16 , which is permeable to light, and works as a microscope for observing a pattern on the substrate 16 .
  • the laser irradiator/microscope optical unit 3 is arranged under the substrate 16 in order to irradiate laser light upward through a gas window 6 to the lower surface.
  • An object lens 4 condenses laser light irradiated from the laser irradiator/microscope optical unit 3 and guides the laser light through the gas window 6 to the substrate 16 .
  • a gas circulatory unit 5 is connected with the gas window 6 through a pipe.
  • the gas circulatory unit 5 provides CVD and purge gases. Further, the gas circulatory unit 5 withdraws and immunizes the gases exhausted from the gas window 6 .
  • the CVD gas includes material and carrier gases.
  • the material gas is chromium carbonyl gas
  • the carrier and purge gases are helium gas or argon gas.
  • the gas window 6 is arranged under the substrate 16 .
  • the gas window 16 has a structure for covering the lower surface of the substrate 16 and has a window for receiving laser light through the object lens 4 from the laser irradiator/microscope optical unit 3 .
  • the gas window 6 is provided the CVD and purge gases from the gas circulatory unit 5 through the pipe, and sprays on the lower surface of the substrate 16 the CVD gas, which includes material gas for pattern film, and the purge gas, which prevents from clouding the window. Further, the gas window 6 sucks the sprayed gas to exhaust it to the gas circulatory unit 5 .
  • FIG. 2 Detail of the gas window 6 is shown in FIG. 2 .
  • the gas window 6 is distinctly separated from the substrate 16 .
  • the gas window 6 and the substrate 16 are actually spaced about 0.5 mm.
  • the gas window 6 is arranged under the substrate 16 .
  • the gas window 6 has a cylindrical shape with a roughly conical cavity at the center of the gas window 6 .
  • the bottom of the gas window 6 namely the lower face of the gas window 6 toward the object lens 4 , has an opening larger than another opening on the upper face of the gas window 6 .
  • the opening on the lower face is occupied by a window 20 , which stops the gases but conducts laser light from the laser irradiator/microscope optical unit 3 via the object lens 4 .
  • a purge gas nozzle 21 and a material supply nozzle 22 are embedded through the cavity.
  • the purge gas nozzle 21 is opened near the window 20 in order to spout purge gas for preventing clouding the window 20 .
  • the material supply nozzle 22 is opened near a laser-irradiating hole 25 , which is opened on the upper face of the gas window 6 , in order to spout the CVD gas out to the cavity, which includes material and carrier gases and is provided from the gas circulatory unit 5 .
  • the upper face of the gas window 6 has a round groove 23 on a circumference centering at the laser-irradiating hole 25 .
  • the gas sprayed on the substrate 16 is sucked from the round groove 23 and is exhausted through a suction pipe 24 to the gas circulatory unit 5 .
  • Arrows shown in FIG. 2 denote directions to which gas around the upper face of the gas window 6 flows.
  • the purge gas first spouts out from the purge gas nozzle 21 to the window 20 , next rises through the laser-irradiating hole 25 , then flows between the gas window 6 and the substrate 16 to the round groove 23 , and after that is exhausted through the suction pipe 24 .
  • the CVD gas first spouts out from the material supply nozzle 22 through the laser-irradiating hole 25 to the lower surface of the substrate 16 , next flows between the gas window 6 and the substrate 16 to the round groove 23 , and then is exhausted through the suction pipe 24 .
  • the pattern-correcting device can steadily deposit pattern film on the substrate 16 by laser CVD without a vacuum device.
  • Laser light irradiated from the laser irradiator/microscope optical unit 3 through the object lens 4 is conducted from the window 20 , passes through the cavity of the gas window 6 and the laser-irradiating hole 25 and is irradiated on the lower surface of the substrate 16 .
  • a penetrating light source 7 lights up the translucent/transparent substrate 16 in order to observe minute pattern on the substrate 16 by the laser irradiator/microscope optical unit 3 .
  • the penetrating light source 7 is designed to have an optimized optic angle with reference to compensation for thickness of the substrate 16 and a translucent cover 31 of a sucking unit 9 (see FIG. 3 ).
  • the laser irradiator/microscope optical unit 3 , the object lens 4 , the gas window 4 and the penetrating light source 7 compose an optical system for observing minute pattern on the substrate 16 .
  • the wavelength of the light for observing is 365 nm.
  • the penetrating light source 7 , an observing light and a slit light are available for light source of the optical system.
  • the slit light projects shape of irradiated laser light on the substrate 16 .
  • a X-Y stage 8 horizontally carries the substrate 16 between the place of delivery on a handler 14 (the place where the substrate 16 is drawn in solid line in FIG. 1 ) and the place over the gas window 6 .
  • the X-Y stage 8 is permeable to light in order that light from the penetrating light source 7 can penetrate the X-Y stage 8 .
  • the sucking unit 9 is fixed on the X-Y stage 8 to adhere to and hold the substrate 16 .
  • the following description shows detailed structure of the sucking unit 9 .
  • the sucking unit 9 includes an sucking mount 30 that has a square frame shape.
  • a 3-mm thickness translucent cover 31 is embedded in the top of the frame of the sucking mount 30 .
  • Female screws 32 for fixing the sucking mount 30 on the X-Y stage 8 are embedded on the top of the sucking mount 30 .
  • An o-ring groove 33 is cut around the inside of the sucking mount 30 under the translucent cover 31 .
  • a rubbery o-ring 34 is embedded in the o-ring groove 33 in order to keep the space between the sucking unit 9 and the substrate 16 airtight.
  • a tube 10 is inserted on the side of the sucking mount 30 . As shown in FIG. 1 , the tube 10 is connected via a pressure sensor 11 with a pump 12 . The pump 12 sucks out the air in the space between the sucking unit 9 and the substrate 16 , and consequently, the sucking unit 9 adheres to the substrate 16 .
  • the lower surface of the substrate 16 corresponds to the lower surface of the sucking unit 9 when the sucking unit 9 adheres to the substrate 16 .
  • This structure of the pattern-correcting device allows the X-Y stage 8 to move without obstruction in a horizontal plane with keeping a minute space between the gas window 6 and the substrate 16 . To keep the minute space allows gas between the gas window 6 and the substrate 16 to flow steadily. Therefore, this structure prevents turbulence of gas damaging formation of pattern film and causing a gas leak from the inside of the gas window 6 .
  • an image-processing unit 13 takes image of the substrate 16 on the handler 14 in order to confirm whether the substrate 16 is put on a stand of the handler 14 at a correct position.
  • the handler 14 When the substrate 16 is put on the stand of the handler 14 , the handler 14 turns around to the place of delivery of the substrate 16 to the sucking unit 9 . Then, the handler 14 lifts up the stand by its Z-axis mechanism in order that the sucking unit 9 becomes available for adhering to the substrate 16 .
  • the sucking unit 9 releases the substrate 16 and puts the substrate 16 on the stand of the handler 14 . Then, the handler 14 lowers the stand by the Z-axis mechanism and turns around to the place for taking out the substrate 16 from the pattern-correcting device.
  • a controller 15 controls workings of the pattern-correcting device; the laser sources 1 and 2 , laser irradiator/microscope optical unit 3 , gas circulatory unit 5 , penetrating light source 7 , X-Y stage 8 , pressure sensor 11 , pump 12 , handler 14 and image-processing unit 14 .
  • a photo-mask-examining device has previously detected white and black defects on a photo mask.
  • the photo-mask-examining device acquires information about defects.
  • the data that represents the information about the defects is referred to as defect data.
  • the defect data include data representing where and which defects are detected and are stored in the controller 15 of the pattern-correcting device.
  • an operator of the pattern-correcting device puts the substrate 16 of a 6-inch photo mask on the stand of the handler 14 .
  • the controller 15 makes the image-processing unit 13 recognize the substrate 16 on the stand of the handler 14 in order to acquire information about positioning the substrate 16 on the stand of the handler 14 .
  • the positioning information includes position of the center of the substrate 16 and an angle that the substrate 16 is set in X-Y plane.
  • the controller 15 directs the handler 14 to turn around the stand so as to suppress disagreement between the angle of the substrate 16 and the angle of the sucking unit 9 when substrate 16 moves to the place for delivery to the sucking unit 9 .
  • the controller 15 directs the X-Y stage 8 to tune in its horizontal position exactly in order that the substrate 16 is positioned just under the sucking unit 9 when the stand of the handler 14 turns around to the place for delivery.
  • the controller 15 directs the handler 14 to lift the Z-axis mechanism up to the predetermined position, and the pump 12 to start to suck out the air in the sucking unit 9 .
  • the pump 12 adjusts conductance of the sucking unit 9 in order that the pressure inside the sucking unit 9 becomes 0.3 atm. Further, the controller 15 directs the handler 14 to lower the Z-axis mechanism to a ready position and to stand by.
  • the controller 15 directs the X-Y stage 8 to move the substrate 16 to the position over the gas window 6 .
  • the controller 15 directs the gas circulatory unit 5 to provide purge gas and CVD gas to the gas window 6 .
  • each of the carrier gas included in the CVD gas and purge gas is argon gas
  • the material gas included in the CVD gas is chromium carbonyl gas
  • the flow rate of the CVD gas is 70-sccm
  • the flow rate of the purge gas is 1500-sccm.
  • the controller 15 directs the X-Y stage 8 to move the substrate 16 so as to a white defect on the substrate 16 is positioned right above the laser-irradiating hole 25 of the gas window 6 .
  • the operator observes the white defect on the substrate 16 by the laser irradiator/microscope optical unit 3 with her/his own eyes to make sure, and next, exactly tunes in size, angle and position of a slit for irradiating laser of the laser irradiator/microscope optical unit 3 .
  • the laser source 2 which irradiates laser light for CVD, irradiates laser light 5 seconds at the white defect to form film.
  • the controller 15 directs the X-Y stage 8 to move a black defect on the substrate 16 just above the laser-irradiating hole 25 of the gas window 6 .
  • the operator observes the black defect on the substrate 16 by the laser irradiator/microscope optical unit 3 with her/his own eyes to make sure, and next, exactly tunes in size, angle and position of a slit for irradiating laser of the laser irradiator/microscope optical unit 3 .
  • the laser source 1 which irradiates laser light for vaporizing film, irradiates two shots of laser light at the black defect to vaporize unnecessary part of pattern film.
  • the controller 15 stops providing purge gas and directs the X-Y stage 8 to move the sucking unit 9 over the stand of the handler 14 . Then, the controller 15 directs the handler 14 to lift its Z-axis mechanism up and the sucking unit 9 to release the substrate 16 in order to put on the substrate 16 on the stand of the handler 14 . Next, the controller 15 directs the handler 14 to lower the Z-axis mechanism and turn around the substrate 16 to the place where the operator can receive the substrate 16 . Finally, the operator 16 takes out the substrate 16 from the pattern-correcting device.
  • a laser light source for forming film on a substrate is arranged over the substrate, and irradiates laser light downward to the substrate. It is assumed that a 5 ⁇ m ⁇ 5 ⁇ m square of chromium film will be formed on a substrate under ideal processing condition according to this conventional technique. Argon gas is used for purge and CVD gas. In this case, though laser light is irradiated to a 5 ⁇ m ⁇ 5 ⁇ m square on the substrate, it is probable that CVD size, which means size of film actually formed on the substrate, grows to about 5.4 ⁇ m ⁇ 5.4 ⁇ m. Further, CVD size is fluctuant over 0.1 ⁇ m even under the same condition.
  • the same square will be formed on a substrate under ideal processing condition according to the pattern-correcting device of the present invention.
  • the CVD size grows to about 5.2 ⁇ m ⁇ 5.2 ⁇ m.
  • the fluctuation of CVD size is about 0.07/m.
  • helium gas is used for purge and CVD gases instead of argon gas and light is irradiated to a 5 ⁇ m ⁇ 5 u m square on the substrate, there is great improvement in both growth and fluctuation of the CVD size.
  • the CVD size is 4.9 ⁇ m ⁇ 4.9 ⁇ m and the fluctuation of the CVD size is 0.03 ⁇ m.
  • Mean free path of particles in helium gas is about ten times longer than that in argon gas or the air. Consequently, particles are diffused more rapidly and widely in helium gas than in argon gas or the air. As a result, in helium gas, the particles caused by laser CVD leave from the substrate faster, and density of the particles near the substrate, which is possible to stick on the substrate again, is lower than in argon gas or the air. This effect is available even if one of purge and carrier gases is argon gas and the other is helium gas.
  • purge gas at the top of the gas window 6 becomes ascending current.
  • the ascending current blows against the substrate 16 and causes a boundary layer of gas flow under the substrate 16 .
  • the boundary layer has a thickness several ten micron-meters. In the boundary layer, the particles fall down. On the other hand, under the boundary layer, the particles are caught in a radial current from the top center of the gas window 6 to the round groove 23 .
  • the thickness of the boundary layer depends on viscosity of gas, flatness of the substrate 16 , etc. Generally, the boundary layer is thicker in argon gas than in helium gas. However, since mean free path of particles in helium gas is longer than in argon gas, CVD size by laser CVD is tighter in helium gas than in argon gas.
  • the sucking unit 9 applies negative pressure to the upper surface of the substrate 16 , which is opposite to the lower surface for masking, in order to adhere to the substrate 16 .
  • This method of holding is effective because: the substrate 16 can be held as its lower surface for masking faces downward; and there is no obstacle between the lower surface of the substrate 16 and the gas window 6 .
  • the top of the sucking unit 9 is covered with the translucent cover 31 .
  • compensation for distortion of the lens included in the penetrating light source 7 can be optimized, namely, optical distortion of light irradiated by the penetrating light source 7 can be compensated. Consequently, the optical system for illuminating, which includes the penetrating light source 7 , the translucent cover 31 and the substrate 16 , can be given a numerical aperture optimized for the numerical aperture of the object lens 4 . As a result, the operator can observe pattern mask on the substrate 16 as high-resolution image.
  • Negative pressure that the sucking unit 9 applies to the substrate 16 may be selected according to the thickness of the substrate 16 .
  • the negative pressure may be low, such as 0.3 kg/cm2. This can prevent the negative pressure breaking the substrate 16 .
  • the pattern-correcting device mentioned above stops providing CVD gas when eliminating unnecessary pattern film, namely when correcting black defects.
  • effect of correcting black defects with providing CVD gas hardly seems to be different from effect of correcting black defects without providing CVD gas. Therefore, the pattern-correcting device does not have to stop providing CVD gas when correcting black defects.
  • To stop providing CVD gas when correcting black defects allows the pattern-correcting device to save material gas consumption, and as a result, replacement of material gas can be delayed.
  • the pattern-correcting device may include an interlock mechanism for checking the inclination of the substrate 16 if necessary.
  • the interlock mechanism for example, includes sensors for measuring height of the substrate 16 .
  • the surface processed for correcting defects faces downward when the surface is held by the sucking unit 9 in order to correct white defects on a photo mask by laser CVD. Consequently, the pattern-correcting device can prevent from sticking again particles caused by laser CVD on the substrate 16 .
  • the difference between the area on the substrate 16 irradiated by laser light and the area on the substrate 16 covered with film is smaller.
  • the fluctuation of the area covered with film is smaller.
  • the pattern-correcting device can process photo mask with high accuracy.
  • the pattern-correcting device includes two laser sources. One of the laser sources irradiates laser light for vaporizing film. The other irradiates laser light for laser CVD. Consequently, a single one of the pattern-correcting device can execute by itself functions for correcting both white and black defects. Both of the laser sources irradiate laser light to the lower surface of the substrate. Consequently, particles both caused by laser CVD for correcting white defects and caused by vaporizing unnecessary film for correcting black defects fall down and do not stick again on the substrate. As a result, the pattern-correcting device can correct white and black defects on a photo mask in high accuracy.
  • helium gas may be available for the main component of purge gas and carrier gas and prevents particles caused by laser CVD from sticking again on the substrate 16 . According to helium gas, the pattern-correcting device can process pattern film on the substrate 16 in higher accuracy.
  • the sucking unit 9 adheres to the substrate 16 when correcting defects of pattern film on the substrate 16 .
  • To adhere to the substrate 16 allows the substrate 16 facing downward when the sucking unit 9 holds the substrate 16 .
  • compensation for distortion of the lens included in the penetrating light source 7 is optimized with reference to the total thickness of the translucent cover 31 and the substrate 16 for the numerical aperture of the object lens 4 .
  • the operator can observe pattern mask on the substrate 16 as high-resolution image.
  • the second embodiment is provided for improving a method of correcting black defects, which is unnecessary part of film, on a photo mask.
  • the pattern-correcting device of the first embodiment mentioned above is applied for the following description of the second embodiment.
  • the laser source 1 irradiates one shot of laser light to a black defect.
  • the shot has twenty-five percent strength of laser light which is conventionally irradiated for eliminating a black defect.
  • the shot eliminates chromium oxide film, which is formed on the top surface of chromium film as an AR court layer b (film preventive of reflection), about 200-angstrom in order to expose a layer lower than the AR court layer.
  • the laser source 2 irradiates laser light 0.5 second on the substrate 16 .
  • the strength of the laser light is less than strength for vaporizing chromium film in order that the top of the exposed chromium layer is oxidized and changes color.
  • the laser source 1 irradiates another laser shot on the exposed chromium layer. After that, the exposed chromium layer is peeled off and another chromium layer is newly exposed. After exposure and peeling of a chromium layer are repeated about ten times, chromium film of a black defect on the substrate 16 is eliminated and a glass surface of the substrate 16 appears.
  • the second embodiment can eliminate black defects by laser light with twenty five percent lower strength than laser light used in conventional technique. Lower strength of laser light allows the substrate 16 to be less damaged. According to conventional techniques for eliminating black defects, a quartz glass layer of the substrate 16 is dug 300-angstrom depth on average under even an optimized condition. On the other hand, according to the second embodiment, the quartz glass layer is dug 50-angstrom depth.
  • the chromium film is oxidized and then is eliminated.
  • Molecular weight of chromium oxide is larger than that of non-oxidized chromium. Therefore, the particles that the second embodiment produces when eliminating chromium film is easy to fall down, and as a result, hardly sticks again on the substrate 16 .
  • the second embodiment can form film on the substrate 16 whose edges are highly straight and have smooth walls. Further, when a 5 , m ⁇ 5 ⁇ m square black defect on the substrate 16 has been corrected according to conventional techniques, transmittance around the corrected black defects on the substrate 16 declines about 1.5 percent. On the other hand, when the same black defect has been corrected according to the second embodiment, the transmittance drops only 1.0 percent or less.
  • the substrate is held with the surface facing downward and material gas for forming pattern film is blown on the surface.
  • laser light is irradiated upward at a white defect in order to form pattern film over the white defect.
  • particles are generated.
  • the particles fall down and do not stick again to the substrate. Consequently, the present invention can prevent pattern film from overgrowing and growing irregularly in size.
  • a photo mask is processed in high accuracy.
  • laser light may be upward irradiated at the black defect to vaporize unnecessary part of pattern film. Though particles are generated in the air when the black defect is vaporized, the particles fall down and do not stick again to the substrate.
  • the present invention may repeatedly both oxidize the top layer of pattern film and peel the layer off. In this case, one layer peeled off at a time is so thin that the substrate is damaged less to eliminate unnecessary part of pattern film.
  • Helium gas is available for purge and CVD gas of the pattern-correcting device of the present invention.
  • purge and CVD gas include helium gas as the main component, less particles stick again to the substrate.
  • the present invention may suck the substrate.
  • To suck the substrate is helpful to downward face the surface of the substrate on which defects are irradiated by laser light.
  • the pattern-correcting device including the top cover and the lens allows its operator to observe the substrate with penetrating light in high resolution.

Abstract

In order to correct a white defect on a surface of a substrate, the substrate is held with the surface facing downward, laser light is upward irradiated at the defect on the surface in material gas, and as a result, the white defect is covered with film.

Description

    CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
  • This application is a division of application Ser. No. 09/981,712, filed Oct. 19, 2001, now pending, and based on Japanese Patent Application No. 2000-320107, filed Oct. 19, 2000, by Yukio Morishige and Makoto Oomiya. This application claims only subject matter disclosed in the parent application and therefore presents no new matter.
  • BACKGROUND OF THE INVENTION
  • This invention relates to correction of pattern on a semiconductor substrate and, particularly, on a semiconductor photo mask.
  • A semiconductor photo mask is used for exposing a circuit pattern on a wafer in a manufacturing process of a semiconductor device, a liquid crystal display device, etc. A semiconductor photo mask is a transparent substrate on that a minute pattern film, which is an opaque film, is formed. When the pattern film is formed on the substrate, two types of defects may occur: a white defect or a clear defect at which a part of the pattern film is lost, and a black defect or an opaque defect at which the substrate is unnecessarily covered with film.
  • For correcting white defects on a semiconductor photo mask, laser CVD (chemical vapor deposition) is available. According to laser CVD, laser light is irradiated at the white defects on the substrate in material gas including chromium. Laser light thermally resolves material gas around the white defects and as a result, film including chromium grows over the white defects.
  • An example of conventional technique for correcting white defects on a semiconductor photo mask is Japanese Patent number (JP-B) 3036687 which is hereinafter referred to as first conventional technique. According to the first conventional technique, an optical system for laser irradiator/laser microscope, which includes laser light source and a unit for irradiation/observation, is arranged above the substrate set in material gas. The optical system downward irradiates laser light at white defects on the substrate. The optical system shapes laser light by its slit and projects a pattern on the substrate. As a result, the optical system corrects white defects precisely.
  • On the other hand, black defects, namely unnecessary part of pattern film, is conventionally vaporized to correct a semiconductor photo mask by irradiating laser light on the part.
  • Japanese Unexamined Patent Publication (JP-A) number H7-104459, namely 104459/1995 is titled “Method and apparatus for correcting defects on a photo mask”, which is hereinafter referred to as second conventional technique. According to the second conventional technique, first, pattern film is printed on one surface of transparent substrate. Next, the substrate is laid on the surface. Then, laser light is irradiated from the other surface through the substrate at black defects to vaporize the black defects. Since the former surface faces downward, particles generated when the black defects are vaporized drop down, and therefore, are not stuck on the former surface.
  • According to the first conventional technique, laser light is irradiated down at white defects on a substrate to form the pattern film covering the white defects. Laser CVD generates particles from decomposed material gas. The particles in the air fall down and are struck again around the area at which laser light has been irradiated on the substrate. From the struck particles, CVD forms unnecessary film on the substrate. As a result, edge of the pattern film swells up on border of the mask pattern. Compared with the second conventional technique, the first conventional technique has less precision.
  • According to the second conventional technique, on the other hand, the surface of the substrate on which laser light is irradiated faces downward, and consequently, most particles generated by laser light fall down. However, 0.1 μm or smaller particles often stick on the substrate again and cause a decline of transmittance around the area at which laser light has been irradiated. The decline of transmittance seriously affects the newest apparatus for correcting photo mask in 0.13 μm rule, which corresponds to 0.5 μm rule on its original photo mask.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a method and a device for correcting defects of pattern film on a surface of a substrate in high accuracy.
  • According to the present invention, the method comprises the steps of: holding the substrate with the surface facing downward; irradiating laser light upward at a white defect on the surface; blowing material gas for forming pattern film to the surface; and forming pattern film over the white defect.
  • The method may further comprise the steps of: irradiating laser light upward at a black defect on the surface; and vaporizing unnecessary part of pattern film in order to correct the black defect.
  • The method may further comprise the steps of: blowing oxygen gas to the surface; irradiating first laser light upward to unnecessary part of pattern film on the surface in order to oxidize the top layer of the part; irradiating second laser light upward to the oxidized top layer in order to peel the oxidized top layer off; and repeating the steps of irradiating first and second laser light in order to eliminate the unnecessary part of pattern film.
  • The step of blowing may further blow purge gas, which prevents a window for conducting laser light from clouding, and carrier gas, which is included in CVD gas for carrying material gas; and the main component of the purge and carrier gases may be helium gas.
  • The substrate may be sucked in order to be held at the step of holding.
  • According to the present invention, the device comprises: a holder for holding the substrate with the surface facing downward; a laser irradiator for irradiating laser light upward at a white defect on the surface; a gas circulatory unit for providing and withdrawing gas including material gas; a gas window for blowing material gas on the surface and conducting laser light from the laser source through the gas window to the white defect in order to form pattern film over the white defect.
  • The device may further comprise an optical unit for observing pattern film on the substrate. In this case, the substrate may be permeable to light and the device further may comprise a penetrating light source for irradiating light through the substrate to the lower surface of the substrate in order to illuminate with the lower surface. Moreover, the sucking unit may comprise a top cover permeable to light, and the penetrating light source may comprise a lens that is designed to compensate the distortion of the lens with reference to the total thickness of the cover and the substrate.
  • According to the device, the laser irradiator may comprise first laser source for irradiating first laser light for vaporizing pattern film, and second laser source for irradiating second laser light for laser CVD. In this case, the first laser light is irradiated through the gas window at black defects in order to vaporize the black defects. The second laser light is irradiated through the gas window at white defects with material gas provided by the gas circulatory unit in order to form film over the white defects.
  • According to the device, the gas circulatory unit may provide purge gas, which prevents a window for conducting laser light from clouding, and carrier gas, which is included in CVD gas for carrying material gas. Preferably, the main component of the purge and carrier gases is helium gas.
  • The holder may suck the substrate in order to hold the substrate.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 shows a block diagram for use in describing a pattern-correcting device of the present invention;
  • FIG. 2 shows a sectional view for use in describing the gas window 6 of the present invention; and
  • FIG. 3 shows a sectional view for use in describing the sucking unit 9 of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS 1. First Embodiment
  • Description will be made about an embodiment, a pattern-correcting device of the present invention. With reference to FIG. 1, first laser source (laser source 1) provides laser light for vaporizing film, namely for correcting black defects and includes Nd:YVO4 laser which generates laser light in pulse width 0.8 ns, wavelength 355 nm and oscillation frequency 3 Hz. Second laser source (laser source 2) provides laser light for laser CVD, namely for correcting white defects and includes Nd:YLF laser which generates laser light in pulse width 30 ns, wavelength 349 nm and oscillation frequency 7 Hz.
  • A laser irradiator/microscope optical unit 3 irradiates laser light generated by the laser sources 1 and 2 to a lower surface of a substrate 16, which is permeable to light, and works as a microscope for observing a pattern on the substrate 16. The laser irradiator/microscope optical unit 3 is arranged under the substrate 16 in order to irradiate laser light upward through a gas window 6 to the lower surface. An object lens 4 condenses laser light irradiated from the laser irradiator/microscope optical unit 3 and guides the laser light through the gas window 6 to the substrate 16.
  • A gas circulatory unit 5 is connected with the gas window 6 through a pipe. The gas circulatory unit 5 provides CVD and purge gases. Further, the gas circulatory unit 5 withdraws and immunizes the gases exhausted from the gas window 6. The CVD gas includes material and carrier gases. For example, the material gas is chromium carbonyl gas, the carrier and purge gases are helium gas or argon gas.
  • The gas window 6 is arranged under the substrate 16. The gas window 16 has a structure for covering the lower surface of the substrate 16 and has a window for receiving laser light through the object lens 4 from the laser irradiator/microscope optical unit 3. The gas window 6 is provided the CVD and purge gases from the gas circulatory unit 5 through the pipe, and sprays on the lower surface of the substrate 16 the CVD gas, which includes material gas for pattern film, and the purge gas, which prevents from clouding the window. Further, the gas window 6 sucks the sprayed gas to exhaust it to the gas circulatory unit 5.
  • Detail of the gas window 6 is shown in FIG. 2. In order to distinctly show the structure of the gas window 6, in FIG. 2, the gas window 6 is distinctly separated from the substrate 16. However, the gas window 6 and the substrate 16 are actually spaced about 0.5 mm.
  • As shown in FIG. 2, the gas window 6 is arranged under the substrate 16. The gas window 6 has a cylindrical shape with a roughly conical cavity at the center of the gas window 6. The bottom of the gas window 6, namely the lower face of the gas window 6 toward the object lens 4, has an opening larger than another opening on the upper face of the gas window 6. The opening on the lower face is occupied by a window 20, which stops the gases but conducts laser light from the laser irradiator/microscope optical unit 3 via the object lens 4.
  • On the side of the gas window 6, a purge gas nozzle 21 and a material supply nozzle 22 are embedded through the cavity. The purge gas nozzle 21 is opened near the window 20 in order to spout purge gas for preventing clouding the window 20. The material supply nozzle 22 is opened near a laser-irradiating hole 25, which is opened on the upper face of the gas window 6, in order to spout the CVD gas out to the cavity, which includes material and carrier gases and is provided from the gas circulatory unit 5.
  • Furthermore, the upper face of the gas window 6 has a round groove 23 on a circumference centering at the laser-irradiating hole 25. The gas sprayed on the substrate 16 is sucked from the round groove 23 and is exhausted through a suction pipe 24 to the gas circulatory unit 5.
  • Arrows shown in FIG. 2 denote directions to which gas around the upper face of the gas window 6 flows. The purge gas first spouts out from the purge gas nozzle 21 to the window 20, next rises through the laser-irradiating hole 25, then flows between the gas window 6 and the substrate 16 to the round groove 23, and after that is exhausted through the suction pipe 24. The CVD gas first spouts out from the material supply nozzle 22 through the laser-irradiating hole 25 to the lower surface of the substrate 16, next flows between the gas window 6 and the substrate 16 to the round groove 23, and then is exhausted through the suction pipe 24.
  • Not only the purge and CVD gases, but also the air around the gas window 6 is sucked through the round groove 23. Consequently, the CVD and purge gases spouted through the laser-irradiating hole 25 are isolated from the air around the gas window 6. As a result, the pattern-correcting device can steadily deposit pattern film on the substrate 16 by laser CVD without a vacuum device.
  • Laser light irradiated from the laser irradiator/microscope optical unit 3 through the object lens 4 is conducted from the window 20, passes through the cavity of the gas window 6 and the laser-irradiating hole 25 and is irradiated on the lower surface of the substrate 16.
  • Turning again to FIG. 1, a penetrating light source 7 lights up the translucent/transparent substrate 16 in order to observe minute pattern on the substrate 16 by the laser irradiator/microscope optical unit 3. The penetrating light source 7 is designed to have an optimized optic angle with reference to compensation for thickness of the substrate 16 and a translucent cover 31 of a sucking unit 9 (see FIG. 3).
  • The laser irradiator/microscope optical unit 3, the object lens 4, the gas window 4 and the penetrating light source 7 compose an optical system for observing minute pattern on the substrate 16. The wavelength of the light for observing is 365 nm. In a observing mode, the penetrating light source 7, an observing light and a slit light are available for light source of the optical system. The slit light projects shape of irradiated laser light on the substrate 16.
  • A X-Y stage 8 horizontally carries the substrate 16 between the place of delivery on a handler 14 (the place where the substrate 16 is drawn in solid line in FIG. 1) and the place over the gas window 6. The X-Y stage 8 is permeable to light in order that light from the penetrating light source 7 can penetrate the X-Y stage 8.
  • A sucking unit 9 is fixed on the X-Y stage 8 to adhere to and hold the substrate 16. The following description shows detailed structure of the sucking unit 9. As shown in FIG. 3, the sucking unit 9 includes an sucking mount 30 that has a square frame shape. A 3-mm thickness translucent cover 31 is embedded in the top of the frame of the sucking mount 30. Female screws 32 for fixing the sucking mount 30 on the X-Y stage 8 are embedded on the top of the sucking mount 30. An o-ring groove 33 is cut around the inside of the sucking mount 30 under the translucent cover 31. A rubbery o-ring 34 is embedded in the o-ring groove 33 in order to keep the space between the sucking unit 9 and the substrate 16 airtight.
  • On the side of the sucking mount 30, a tube 10 is inserted. As shown in FIG. 1, the tube 10 is connected via a pressure sensor 11 with a pump 12. The pump 12 sucks out the air in the space between the sucking unit 9 and the substrate 16, and consequently, the sucking unit 9 adheres to the substrate 16.
  • As shown in FIG. 3, the lower surface of the substrate 16 corresponds to the lower surface of the sucking unit 9 when the sucking unit 9 adheres to the substrate 16. This structure of the pattern-correcting device allows the X-Y stage 8 to move without obstruction in a horizontal plane with keeping a minute space between the gas window 6 and the substrate 16. To keep the minute space allows gas between the gas window 6 and the substrate 16 to flow steadily. Therefore, this structure prevents turbulence of gas damaging formation of pattern film and causing a gas leak from the inside of the gas window 6.
  • Turning again to FIG. 1, an image-processing unit 13 takes image of the substrate 16 on the handler 14 in order to confirm whether the substrate 16 is put on a stand of the handler 14 at a correct position.
  • When the substrate 16 is put on the stand of the handler 14, the handler 14 turns around to the place of delivery of the substrate 16 to the sucking unit 9. Then, the handler 14 lifts up the stand by its Z-axis mechanism in order that the sucking unit 9 becomes available for adhering to the substrate 16.
  • After finishing correcting defects of a photo mask, the sucking unit 9 releases the substrate 16 and puts the substrate 16 on the stand of the handler 14. Then, the handler 14 lowers the stand by the Z-axis mechanism and turns around to the place for taking out the substrate 16 from the pattern-correcting device.
  • A controller 15 controls workings of the pattern-correcting device; the laser sources 1 and 2, laser irradiator/microscope optical unit 3, gas circulatory unit 5, penetrating light source 7, X-Y stage 8, pressure sensor 11, pump 12, handler 14 and image-processing unit 14.
  • Description will be made about the working process of the pattern-correcting device of the present invention.
  • (1) A photo-mask-examining device has previously detected white and black defects on a photo mask. The photo-mask-examining device acquires information about defects. Hereinafter, the data that represents the information about the defects is referred to as defect data. The defect data include data representing where and which defects are detected and are stored in the controller 15 of the pattern-correcting device.
  • First, an operator of the pattern-correcting device puts the substrate 16 of a 6-inch photo mask on the stand of the handler 14. The controller 15 makes the image-processing unit 13 recognize the substrate 16 on the stand of the handler 14 in order to acquire information about positioning the substrate 16 on the stand of the handler 14. The positioning information includes position of the center of the substrate 16 and an angle that the substrate 16 is set in X-Y plane. With reference to the positioning information, the controller 15 directs the handler 14 to turn around the stand so as to suppress disagreement between the angle of the substrate 16 and the angle of the sucking unit 9 when substrate 16 moves to the place for delivery to the sucking unit 9. Simultaneously, the controller 15 directs the X-Y stage 8 to tune in its horizontal position exactly in order that the substrate 16 is positioned just under the sucking unit 9 when the stand of the handler 14 turns around to the place for delivery.
  • Next, the controller 15 directs the handler 14 to lift the Z-axis mechanism up to the predetermined position, and the pump 12 to start to suck out the air in the sucking unit 9. With reference to pressure measured by the pressure sensor 11, the pump 12 adjusts conductance of the sucking unit 9 in order that the pressure inside the sucking unit 9 becomes 0.3 atm. Further, the controller 15 directs the handler 14 to lower the Z-axis mechanism to a ready position and to stand by.
  • After the sucking unit 9 adheres to the substrate 16, the controller 15 directs the X-Y stage 8 to move the substrate 16 to the position over the gas window 6. On this situation, the controller 15 directs the gas circulatory unit 5 to provide purge gas and CVD gas to the gas window 6. It is assumed that: each of the carrier gas included in the CVD gas and purge gas is argon gas; the material gas included in the CVD gas is chromium carbonyl gas; the flow rate of the CVD gas is 70-sccm; and the flow rate of the purge gas is 1500-sccm.
  • With reference to the defects data previously stored in the controller 15, the controller 15 directs the X-Y stage 8 to move the substrate 16 so as to a white defect on the substrate 16 is positioned right above the laser-irradiating hole 25 of the gas window 6. The operator observes the white defect on the substrate 16 by the laser irradiator/microscope optical unit 3 with her/his own eyes to make sure, and next, exactly tunes in size, angle and position of a slit for irradiating laser of the laser irradiator/microscope optical unit 3. Then, the laser source 2, which irradiates laser light for CVD, irradiates laser light 5 seconds at the white defect to form film. These processes are repeated for all of the white defects on the substrate 16.
  • When all of the white defects on the substrate 16 are corrected, the operator stops providing CVD gas and only provides purge gas. Next, the controller 15 directs the X-Y stage 8 to move a black defect on the substrate 16 just above the laser-irradiating hole 25 of the gas window 6. The operator observes the black defect on the substrate 16 by the laser irradiator/microscope optical unit 3 with her/his own eyes to make sure, and next, exactly tunes in size, angle and position of a slit for irradiating laser of the laser irradiator/microscope optical unit 3. Then, the laser source 1, which irradiates laser light for vaporizing film, irradiates two shots of laser light at the black defect to vaporize unnecessary part of pattern film. These processes are repeated for all of the black defects on the substrate 16.
  • After all of the black defects on the substrate 16 are corrected, the controller 15 stops providing purge gas and directs the X-Y stage 8 to move the sucking unit 9 over the stand of the handler 14. Then, the controller 15 directs the handler 14 to lift its Z-axis mechanism up and the sucking unit 9 to release the substrate 16 in order to put on the substrate 16 on the stand of the handler 14. Next, the controller 15 directs the handler 14 to lower the Z-axis mechanism and turn around the substrate 16 to the place where the operator can receive the substrate 16. Finally, the operator 16 takes out the substrate 16 from the pattern-correcting device.
  • (2) Compared with a typical conventional technique, the pattern-correcting device is described below.
  • Conventionally, a laser light source for forming film on a substrate is arranged over the substrate, and irradiates laser light downward to the substrate. It is assumed that a 5 μm×5 μm square of chromium film will be formed on a substrate under ideal processing condition according to this conventional technique. Argon gas is used for purge and CVD gas. In this case, though laser light is irradiated to a 5 μm×5 μm square on the substrate, it is probable that CVD size, which means size of film actually formed on the substrate, grows to about 5.4 μm×5.4 μm. Further, CVD size is fluctuant over 0.1 μm even under the same condition.
  • On the other hand, it is assumed that the same square will be formed on a substrate under ideal processing condition according to the pattern-correcting device of the present invention. In this case, when laser light is irradiated to a 5 μm×5 μm square on the substrate, the CVD size grows to about 5.2 μm×5.2 μm. The fluctuation of CVD size is about 0.07/m. Moreover, when helium gas is used for purge and CVD gases instead of argon gas and light is irradiated to a 5 μm×5 u m square on the substrate, there is great improvement in both growth and fluctuation of the CVD size. In this case, the CVD size is 4.9 μm×4.9 μm and the fluctuation of the CVD size is 0.03 μm.
  • Mean free path of particles in helium gas is about ten times longer than that in argon gas or the air. Consequently, particles are diffused more rapidly and widely in helium gas than in argon gas or the air. As a result, in helium gas, the particles caused by laser CVD leave from the substrate faster, and density of the particles near the substrate, which is possible to stick on the substrate again, is lower than in argon gas or the air. This effect is available even if one of purge and carrier gases is argon gas and the other is helium gas.
  • Regardless of type of gas in which the substrate is arranged, as mentioned above, since laser light is irradiated upward on the lower surface of the substrate 16, the particles caused by processes for correcting defects fall down. As a result, the probability that the particles stick on the substrate again reduces greatly.
  • As shown in FIG. 2, purge gas at the top of the gas window 6 becomes ascending current. The ascending current blows against the substrate 16 and causes a boundary layer of gas flow under the substrate 16. The boundary layer has a thickness several ten micron-meters. In the boundary layer, the particles fall down. On the other hand, under the boundary layer, the particles are caught in a radial current from the top center of the gas window 6 to the round groove 23.
  • The thickness of the boundary layer depends on viscosity of gas, flatness of the substrate 16, etc. Generally, the boundary layer is thicker in argon gas than in helium gas. However, since mean free path of particles in helium gas is longer than in argon gas, CVD size by laser CVD is tighter in helium gas than in argon gas.
  • (3) Next, description will be made about working process of the sucking unit 9.
  • The sucking unit 9 applies negative pressure to the upper surface of the substrate 16, which is opposite to the lower surface for masking, in order to adhere to the substrate 16. This method of holding is effective because: the substrate 16 can be held as its lower surface for masking faces downward; and there is no obstacle between the lower surface of the substrate 16 and the gas window 6.
  • The top of the sucking unit 9 is covered with the translucent cover 31. With reference to the total thickness of the translucent cover 31 and the substrate 16, compensation for distortion of the lens included in the penetrating light source 7 can be optimized, namely, optical distortion of light irradiated by the penetrating light source 7 can be compensated. Consequently, the optical system for illuminating, which includes the penetrating light source 7, the translucent cover 31 and the substrate 16, can be given a numerical aperture optimized for the numerical aperture of the object lens 4. As a result, the operator can observe pattern mask on the substrate 16 as high-resolution image.
  • Negative pressure that the sucking unit 9 applies to the substrate 16 may be selected according to the thickness of the substrate 16. For example, when the substrate 16 is 5 inch square and 2.3-mm thickness, the negative pressure may be low, such as 0.3 kg/cm2. This can prevent the negative pressure breaking the substrate 16.
  • The pattern-correcting device mentioned above stops providing CVD gas when eliminating unnecessary pattern film, namely when correcting black defects. However, effect of correcting black defects with providing CVD gas hardly seems to be different from effect of correcting black defects without providing CVD gas. Therefore, the pattern-correcting device does not have to stop providing CVD gas when correcting black defects. To stop providing CVD gas when correcting black defects allows the pattern-correcting device to save material gas consumption, and as a result, replacement of material gas can be delayed.
  • Further, according to the pattern-correcting device mentioned above, the inclination of the substrate 16 is not checked after the sucking unit 9 adheres to the substrate 16. However, the pattern-correcting device may include an interlock mechanism for checking the inclination of the substrate 16 if necessary. The interlock mechanism, for example, includes sensors for measuring height of the substrate 16.
  • According to the pattern-correcting device mentioned above, the surface processed for correcting defects faces downward when the surface is held by the sucking unit 9 in order to correct white defects on a photo mask by laser CVD. Consequently, the pattern-correcting device can prevent from sticking again particles caused by laser CVD on the substrate 16. The difference between the area on the substrate 16 irradiated by laser light and the area on the substrate 16 covered with film is smaller. The fluctuation of the area covered with film is smaller. As a result, the pattern-correcting device can process photo mask with high accuracy.
  • Further, the pattern-correcting device includes two laser sources. One of the laser sources irradiates laser light for vaporizing film. The other irradiates laser light for laser CVD. Consequently, a single one of the pattern-correcting device can execute by itself functions for correcting both white and black defects. Both of the laser sources irradiate laser light to the lower surface of the substrate. Consequently, particles both caused by laser CVD for correcting white defects and caused by vaporizing unnecessary film for correcting black defects fall down and do not stick again on the substrate. As a result, the pattern-correcting device can correct white and black defects on a photo mask in high accuracy.
  • Further, helium gas may be available for the main component of purge gas and carrier gas and prevents particles caused by laser CVD from sticking again on the substrate 16. According to helium gas, the pattern-correcting device can process pattern film on the substrate 16 in higher accuracy.
  • Further, in order to hold the substrate 16, the sucking unit 9 adheres to the substrate 16 when correcting defects of pattern film on the substrate 16. To adhere to the substrate 16 allows the substrate 16 facing downward when the sucking unit 9 holds the substrate 16.
  • Further, compensation for distortion of the lens included in the penetrating light source 7 is optimized with reference to the total thickness of the translucent cover 31 and the substrate 16 for the numerical aperture of the object lens 4. As a result, the operator can observe pattern mask on the substrate 16 as high-resolution image.
  • 2. Second Embodiment
  • The second embodiment is provided for improving a method of correcting black defects, which is unnecessary part of film, on a photo mask. The pattern-correcting device of the first embodiment mentioned above is applied for the following description of the second embodiment.
  • According to the first embodiment, argon or helium gas is provided as purge gas. On the other hand, according to the second embodiment, oxygen gas is provided as purge gas and no CVD gas is provided. In this situation, the laser source 1 irradiates one shot of laser light to a black defect. The shot has twenty-five percent strength of laser light which is conventionally irradiated for eliminating a black defect. The shot eliminates chromium oxide film, which is formed on the top surface of chromium film as an AR court layer b (film preventive of reflection), about 200-angstrom in order to expose a layer lower than the AR court layer.
  • Next, the laser source 2 irradiates laser light 0.5 second on the substrate 16. This time, the strength of the laser light is less than strength for vaporizing chromium film in order that the top of the exposed chromium layer is oxidized and changes color. Then, the laser source 1 irradiates another laser shot on the exposed chromium layer. After that, the exposed chromium layer is peeled off and another chromium layer is newly exposed. After exposure and peeling of a chromium layer are repeated about ten times, chromium film of a black defect on the substrate 16 is eliminated and a glass surface of the substrate 16 appears.
  • The second embodiment can eliminate black defects by laser light with twenty five percent lower strength than laser light used in conventional technique. Lower strength of laser light allows the substrate 16 to be less damaged. According to conventional techniques for eliminating black defects, a quartz glass layer of the substrate 16 is dug 300-angstrom depth on average under even an optimized condition. On the other hand, according to the second embodiment, the quartz glass layer is dug 50-angstrom depth.
  • According to the second embodiment, the chromium film is oxidized and then is eliminated. Molecular weight of chromium oxide is larger than that of non-oxidized chromium. Therefore, the particles that the second embodiment produces when eliminating chromium film is easy to fall down, and as a result, hardly sticks again on the substrate 16. Compared with conventional technique for eliminating black defects, the second embodiment can form film on the substrate 16 whose edges are highly straight and have smooth walls. Further, when a 5, m×5 μm square black defect on the substrate 16 has been corrected according to conventional techniques, transmittance around the corrected black defects on the substrate 16 declines about 1.5 percent. On the other hand, when the same black defect has been corrected according to the second embodiment, the transmittance drops only 1.0 percent or less.
  • According to the present invention, the substrate is held with the surface facing downward and material gas for forming pattern film is blown on the surface. In this situation, laser light is irradiated upward at a white defect in order to form pattern film over the white defect. When the laser light is irradiated at the white defect, particles are generated. However, the particles fall down and do not stick again to the substrate. Consequently, the present invention can prevent pattern film from overgrowing and growing irregularly in size. As a result, according to the present invention, a photo mask is processed in high accuracy.
  • Further, in order to correct a black defect on the substrate, laser light may be upward irradiated at the black defect to vaporize unnecessary part of pattern film. Though particles are generated in the air when the black defect is vaporized, the particles fall down and do not stick again to the substrate.
  • In order to eliminate unnecessary part of pattern film, the present invention may repeatedly both oxidize the top layer of pattern film and peel the layer off. In this case, one layer peeled off at a time is so thin that the substrate is damaged less to eliminate unnecessary part of pattern film.
  • Helium gas is available for purge and CVD gas of the pattern-correcting device of the present invention. When purge and CVD gas include helium gas as the main component, less particles stick again to the substrate.
  • In order to hold the substrate, the present invention may suck the substrate. To suck the substrate is helpful to downward face the surface of the substrate on which defects are irradiated by laser light.
  • The pattern-correcting device including the top cover and the lens allows its operator to observe the substrate with penetrating light in high resolution.
  • While this invention has thus far been described in conjunction with a few embodiments thereof, it will be readily possible for those skilled in the art to put the this invention into various other manners.

Claims (5)

1. A method of correcting defects of pattern film on a surface of a substrate, comprising the steps of:
holding the substrate with the surface facing downward;
blowing material gas for forming pattern film to the surface; and
irradiating laser light upward at a white defect on the surface to form pattern film over the white defect.
2. The method claimed in claim 1, further comprising the steps of:
irradiating laser light upward at a black defect on the surface; and
vaporizing unnecessary part of pattern film in order to correct the black defect.
3. The method claimed in claim 1, further comprising the steps of:
blowing oxygen gas to the surface;
irradiating first laser light upward to unnecessary part of pattern film on the surface in order to oxidize the top layer of the part;
irradiating second laser light upward to the oxidized top layer in order to peel the oxidized top layer off; and
repeating the steps of irradiating first and second laser light in order to eliminate the unnecessary part of pattern film.
4. The method claimed in clam 1, wherein:
the step of blowing further blows purge gas, which prevents a window for conducting laser light from clouding, and carrier gas, which is included in CVD gas for carrying material gas; and
the main component of the purge and carrier gases is helium gas.
5. The method claimed in claim 1, wherein the substrate is sucked in order to be held at the step of holding.
US11/098,380 2000-10-19 2005-04-05 Method and device for correcting pattern film on a semiconductor substrate Abandoned US20050178752A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/098,380 US20050178752A1 (en) 2000-10-19 2005-04-05 Method and device for correcting pattern film on a semiconductor substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000320107A JP3479838B2 (en) 2000-10-19 2000-10-19 Pattern correction method and pattern correction device
JP2000-320107 2000-10-19
US09/981,712 US6890387B2 (en) 2000-10-19 2001-10-19 Method and device for correcting pattern film on a semiconductor substrate
US11/098,380 US20050178752A1 (en) 2000-10-19 2005-04-05 Method and device for correcting pattern film on a semiconductor substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/981,712 Division US6890387B2 (en) 2000-10-19 2001-10-19 Method and device for correcting pattern film on a semiconductor substrate

Publications (1)

Publication Number Publication Date
US20050178752A1 true US20050178752A1 (en) 2005-08-18

Family

ID=18798445

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/981,712 Expired - Fee Related US6890387B2 (en) 2000-10-19 2001-10-19 Method and device for correcting pattern film on a semiconductor substrate
US11/098,380 Abandoned US20050178752A1 (en) 2000-10-19 2005-04-05 Method and device for correcting pattern film on a semiconductor substrate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/981,712 Expired - Fee Related US6890387B2 (en) 2000-10-19 2001-10-19 Method and device for correcting pattern film on a semiconductor substrate

Country Status (6)

Country Link
US (2) US6890387B2 (en)
JP (1) JP3479838B2 (en)
KR (1) KR100444709B1 (en)
DE (1) DE10151724B4 (en)
SG (1) SG106643A1 (en)
TW (1) TW573049B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8587002B2 (en) 2011-03-02 2013-11-19 Panasonic Corporation Organic EL panel and method of manufacturing the same
TWI485506B (en) * 2008-03-04 2015-05-21 Hitach High Tech Science Corp Method for fabricating euvl mask

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3859543B2 (en) * 2002-05-22 2006-12-20 レーザーフロントテクノロジーズ株式会社 Laser processing equipment
US7232715B2 (en) * 2002-11-15 2007-06-19 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating semiconductor film and semiconductor device and laser processing apparatus
US6683277B1 (en) * 2002-12-20 2004-01-27 Osram Opto Semiconductors Laser ablation nozzle assembly
JP4334308B2 (en) * 2003-09-24 2009-09-30 オムロンレーザーフロント株式会社 Wiring correction device
JP4282617B2 (en) * 2005-02-16 2009-06-24 オムロンレーザーフロント株式会社 Gas window and chemical vapor deposition apparatus
JP4754369B2 (en) * 2006-02-28 2011-08-24 オムロンレーザーフロント株式会社 Photomask defect correcting method and defect correcting apparatus
JP2007310310A (en) * 2006-05-22 2007-11-29 Sony Corp Method of forming conductive film, method of manufacturing wiring substrate and method of manufacturing display device
US8164057B2 (en) * 2006-10-24 2012-04-24 Dov Shachal Interface, a method for observing an object within a non-vacuum environment and a scanning electron microscope
JP5053030B2 (en) * 2007-10-16 2012-10-17 大日本印刷株式会社 Photomask defect correcting method, manufacturing method, and defect correcting apparatus
US8981294B2 (en) 2008-07-03 2015-03-17 B-Nano Ltd. Scanning electron microscope, an interface and a method for observing an object within a non-vacuum environment
JP5206979B2 (en) * 2009-03-13 2013-06-12 オムロン株式会社 Method for forming thin film by laser CVD and gas window suitable for the method
JP5163967B2 (en) * 2010-07-30 2013-03-13 オムロン株式会社 Photomask correction method and laser processing apparatus
US9466458B2 (en) 2013-02-20 2016-10-11 B-Nano Ltd. Scanning electron microscope
CN104746041B (en) * 2015-03-04 2018-02-13 深圳清溢光电股份有限公司 The method that laser Gaseous depositional mode repairs white defect
KR101723923B1 (en) * 2015-11-11 2017-04-11 참엔지니어링(주) Deposition apparatus
CN112764309A (en) * 2021-02-07 2021-05-07 泉芯集成电路制造(济南)有限公司 Photomask defect removing method and device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463073A (en) * 1981-07-03 1984-07-31 Hitachi, Ltd. Method and apparatus for redressing defective photomask
US4628531A (en) * 1983-02-28 1986-12-09 Hitachi, Ltd. Pattern checking apparatus
US4778693A (en) * 1986-10-17 1988-10-18 Quantronix Corporation Photolithographic mask repair system
US4816294A (en) * 1987-05-04 1989-03-28 Midwest Research Institute Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes
US5634230A (en) * 1994-12-27 1997-06-03 Siemens Aktiengesellschaft Apparatus and method for cleaning photomasks
US5707888A (en) * 1995-05-04 1998-01-13 Lsi Logic Corporation Oxide formed in semiconductor substrate by implantation of substrate with a noble gas prior to oxidation
US6074571A (en) * 1997-09-30 2000-06-13 International Business Machines Corporation Cut and blast defect to avoid chrome roll over annealing
US6190836B1 (en) * 1997-01-21 2001-02-20 International Business Machines Corporation Methods for repair of photomasks

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922372B2 (en) * 1979-02-21 1984-05-26 株式会社日立製作所 Photomask modification method
JPS57124437A (en) 1981-01-26 1982-08-03 Mitsubishi Electric Corp Correction of pattern defect
JPS60196942A (en) * 1984-03-21 1985-10-05 Hitachi Ltd Photomask defect correcting process
JPS61279690A (en) 1985-06-05 1986-12-10 Hitachi Ltd Surface treatment device
JPS6244742A (en) 1985-08-23 1987-02-26 Hitachi Ltd Method and apparatus for correction
JPS6336249A (en) * 1986-07-31 1988-02-16 Nec Corp Photomask correcting system
JP2835095B2 (en) * 1989-09-18 1998-12-14 日本真空技術株式会社 Laser CVD equipment
JPH05259247A (en) * 1992-03-10 1993-10-08 Nec Corp Prober for solid image-pickup element
JPH07104459A (en) 1993-10-08 1995-04-21 Fujitsu Ltd Defect correction method and device for photomask
JPH0862827A (en) 1994-08-19 1996-03-08 Fujitsu Ltd Phase shift mask and its correcting method
JP2694264B2 (en) * 1995-10-30 1997-12-24 セイコーインスツルメンツ株式会社 Focused ion beam equipment
JP2785803B2 (en) * 1996-05-01 1998-08-13 日本電気株式会社 Method and apparatus for correcting white spot defect on photomask
JP3036687B2 (en) 1997-05-23 2000-04-24 日本電気株式会社 Laser CVD equipment
KR100269318B1 (en) 1997-12-19 2000-12-01 윤종용 Method for developing photoresist formed on wafer
JP3758887B2 (en) * 1999-03-31 2006-03-22 Ntn株式会社 Pattern correction device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463073A (en) * 1981-07-03 1984-07-31 Hitachi, Ltd. Method and apparatus for redressing defective photomask
US4628531A (en) * 1983-02-28 1986-12-09 Hitachi, Ltd. Pattern checking apparatus
US4778693A (en) * 1986-10-17 1988-10-18 Quantronix Corporation Photolithographic mask repair system
US4816294A (en) * 1987-05-04 1989-03-28 Midwest Research Institute Method and apparatus for removing and preventing window deposition during photochemical vapor deposition (photo-CVD) processes
US5634230A (en) * 1994-12-27 1997-06-03 Siemens Aktiengesellschaft Apparatus and method for cleaning photomasks
US5707888A (en) * 1995-05-04 1998-01-13 Lsi Logic Corporation Oxide formed in semiconductor substrate by implantation of substrate with a noble gas prior to oxidation
US6190836B1 (en) * 1997-01-21 2001-02-20 International Business Machines Corporation Methods for repair of photomasks
US6074571A (en) * 1997-09-30 2000-06-13 International Business Machines Corporation Cut and blast defect to avoid chrome roll over annealing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI485506B (en) * 2008-03-04 2015-05-21 Hitach High Tech Science Corp Method for fabricating euvl mask
US8587002B2 (en) 2011-03-02 2013-11-19 Panasonic Corporation Organic EL panel and method of manufacturing the same

Also Published As

Publication number Publication date
SG106643A1 (en) 2004-10-29
KR20020033438A (en) 2002-05-06
KR100444709B1 (en) 2004-08-21
JP2002131888A (en) 2002-05-09
US6890387B2 (en) 2005-05-10
TW573049B (en) 2004-01-21
JP3479838B2 (en) 2003-12-15
US20020047095A1 (en) 2002-04-25
DE10151724A1 (en) 2002-06-06
DE10151724B4 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US20050178752A1 (en) Method and device for correcting pattern film on a semiconductor substrate
JP3479833B2 (en) Laser correction method and apparatus
KR100953462B1 (en) Film removing apparatus, film removing method and substrate processing system
KR100941688B1 (en) Substrate delivery apparatus, substrate processing apparatus, substrate delivery method
TWI336277B (en) Laser processing device, laser processing head and laser processing method
JPH10116760A (en) Aligner and substrate holding device
GB2435844A (en) Laser processing apparatus, laser processing head and laser processing method
JP2007055197A (en) Splitting device for brittle material
JP5145524B2 (en) Exposure equipment
JP3525841B2 (en) Laser repair method and device
CN104919078B (en) Functional coating, liquid immersion member, method for manufacturing liquid immersion member, light exposure apparatus, and device manufacturing method
JP2006294807A (en) Method dividing of wafer
JPH10280152A (en) Chamberless laser cvd device
KR20200074928A (en) System for inspecting edge area of wafer
JP2006164893A (en) Charged particle beam device and contamination removing method of the same
JP3345524B2 (en) Method and apparatus for forming metal film on electronic circuit board and method for correcting wiring thereof
JP2004139126A (en) Method and device of laser repair
JP3990148B2 (en) Processing system
JP2005171272A (en) Laser cvd apparatus
JP2005033128A (en) Method and device for foreign matter removal
JP2003228162A (en) Method of repairing halftone defect of photomask
JP2004140239A (en) Thin film removing device and its method
KR20190134275A (en) System for inspecting edge area of wafer and method using the same
JPS62174608A (en) Pattern detector
JP2005144526A (en) Manufacturing method for laser-beam machined product, and laser-beam machining apparatus

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION