US20100063400A1 - Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging - Google Patents

Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging Download PDF

Info

Publication number
US20100063400A1
US20100063400A1 US12/205,599 US20559908A US2010063400A1 US 20100063400 A1 US20100063400 A1 US 20100063400A1 US 20559908 A US20559908 A US 20559908A US 2010063400 A1 US2010063400 A1 US 2010063400A1
Authority
US
United States
Prior art keywords
image
ray
ultrasound
ray image
guide wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/205,599
Inventor
Anne Lindsay Hall
Michael Washburn
William Alphonsus Zang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US12/205,599 priority Critical patent/US20100063400A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HALL, ANNE LINDSAY, WASHBURN, MICHAEL, Zang, William Alphonsus
Priority to JP2009193753A priority patent/JP5639352B2/en
Publication of US20100063400A1 publication Critical patent/US20100063400A1/en
Priority to US14/721,145 priority patent/US9468413B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/12Devices for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4417Constructional features of apparatus for radiation diagnosis related to combined acquisition of different diagnostic modalities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/464Displaying means of special interest involving a plurality of displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/467Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/469Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4254Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors mounted on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/464Displaying means of special interest involving a plurality of displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5261Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4472Wireless probes

Definitions

  • This invention relates generally to dual modality imaging and more particularly to vascular interventional radiology.
  • Vascular interventional radiology often involves angioplasty using a balloon catheter. Once in place, such as in an area of stenosis, the balloon is inflated, compressing the plaque against the walls of the vessel with the purpose of creating a larger lumen.
  • fluoroscopy is used to track the insertion of a guide wire in real-time to an area in which the balloon catheter will be deployed.
  • Vasculature is not visible on the fluoroscopic images, and thus a bolus of contrast is often injected through a guidance catheter to provide an image of the arterial tree. Precise guidance of the guide wire and catheter are needed to avoid damage to anatomical structures.
  • the subject or patient typically receives a high dose of radiation over the course of the procedure, as do persons standing nearby.
  • the contrast agent is quickly cleared by the body, and thus multiple doses of contrast are often injected, which in some cases may result in contrast induced nephrotoxicity, as well as additional cost.
  • an apparatus for tracking movement of a foreign object within a subject has an X-ray fluoroscopic system with an X-ray detector and an ultrasound system that has a probe with a position sensor.
  • a display is configured to display a static X-ray image acquired by the X-ray fluoroscopic system and a real-time ultrasound image acquired by the ultrasound system.
  • the X-ray image and the ultrasound image each display at least a portion of the foreign object and at least a portion of surrounding area.
  • a tracking module is configured to track movement of the foreign object within the ultrasound image and the display is further configured to display an indication of the movement of the foreign object on the X-ray image.
  • a method for positioning a guide wire within a subject comprises displaying a static X-ray image comprising at least a tip of a guide wire and vessels indicated by contrast.
  • a live ultrasound image is displayed that includes at least the tip of the guide wire and at least a portion of the vessels.
  • the guide wire is identified on both the X-ray image and the ultrasound image. Movement of the guide wire is indicated on the X-ray image based on movement of the guide wire that is detected in the ultrasound image.
  • an apparatus for positioning a guide wire within the vasculature of a subject has an X-ray detector configured to detect X-rays that are generated by an X-ray tube and transmitted through a subject.
  • An ultrasound probe has a position sensor.
  • At least one display is configured to display a static contrast-enhanced X-ray image that is detected by the X-ray detector and a real-time ultrasound image that is acquired by the ultrasound probe.
  • the X-ray image and the ultrasound image display at least a portion of a guide wire.
  • a registration module is configured to register the X-ray and ultrasound images with respect to each other based on a point identified in each of the X-ray and ultrasound images.
  • the display is further configured to display an indication of movement of the guide wire on the X-ray image based on movement of the guide wire detected within the ultrasound image.
  • FIG. 1 illustrates an ultrasound system interconnected with an X-ray fluoroscopic system formed in accordance with an embodiment of the present invention.
  • FIG. 2 illustrates a method for tracking movement of a foreign object on an image acquired by a first imaging system based on movement of the object within an image acquired by a second imaging system in accordance with an embodiment of the present invention.
  • FIG. 3 illustrates a contrast-enhanced X-ray image on a display that shows the vascular tree pattern and a guide wire and guidance catheter inserted into a vessel in accordance with an embodiment of the present invention.
  • FIG. 4 illustrates the X-ray image and a real-time ultrasound image showing a guide wire in accordance with an embodiment of the present invention.
  • FIG. 5 illustrates the X-ray image and a real-time ultrasound projection image in accordance with an embodiment of the present invention.
  • the functional blocks are not necessarily indicative of the division between hardware circuitry.
  • one or more of the functional blocks e.g., processors or memories
  • the programs may be stand alone programs, may be incorporated as subroutines in an operating system, may be functions in an installed software package, and the like. It should be understood that the various embodiments are not limited to the arrangements and instrumentality shown in the drawings.
  • FIG. 1 illustrates an ultrasound system interconnected with an X-ray fluoroscopic system in accordance with an embodiment of the present invention.
  • a table 100 or bed is provided for supporting a subject 102 .
  • An X-ray tube 104 or other generator is connected to an X-ray fluoroscopic system 106 .
  • the X-ray tube 104 is positioned above the subject 102 , but it should be understood that the X-ray tube 104 may be moved to other positions with respect to the subject 102 .
  • a detector 108 is positioned opposite the X-ray tube 104 with the subject 102 there-between.
  • the detector 108 may be any known detector capable of detecting X-ray radiation.
  • the X-ray fluoroscopic system 106 has at least a memory 110 , a processor 112 and at least one user input 114 , such as a keyboard, trackball, pointer, touch panel, and the like.
  • the X-ray fluoroscopic system 106 causes the X-ray tube 104 to generate X-rays and the detector 108 detects an image. Fluoroscopy may be accomplished by activating the X-ray tube 104 continuously or at predetermined intervals while the detector 108 detects corresponding images. Detected image(s) may be displayed on a display 116 that may be configured to display a single image or more than one image at the same time.
  • An ultrasound system 122 communicates with the X-ray fluoroscopic system 106 via a connection 124 .
  • the connection 124 may be a wired or wireless connection.
  • the ultrasound system 122 may transmit or convey ultrasound imaging data to the X-ray fluoroscopic system 106 .
  • the communication between the systems 106 and 122 may be one-way or two-way, allowing image data, commands and information to be transmitted between the two systems 106 and 122 .
  • the ultrasound system 122 may be a stand-alone system that may be moved from room to room, such as a cart-based system, hand-carried system, or other portable system.
  • An operator may position an ultrasound probe 126 on the subject 102 to image an area of interest within the subject 102 .
  • the ultrasound probe 126 has a position sensor 142 .
  • the ultrasound system 122 has at least a memory 128 , a processor 130 , and a user input 132 .
  • a display 134 may be provided.
  • images acquired using the X-ray fluoroscopic system 106 may be displayed as a first image 118 and images acquired using the ultrasound system 122 may be displayed as a second image 120 on the display 116 , forming a dual display configuration.
  • two side-by-side monitors (not shown) may be used.
  • the images acquired by both the X-ray fluoroscopic system 106 and the ultrasound system 122 may be acquired in known manners.
  • the ultrasound system 122 may be a 3D-capable miniaturized ultrasound system that is connected to the X-ray fluoroscopic system 106 via the connection 124 .
  • miniaturized means that the ultrasound system 122 is configured to be carried in a person's hand, pocket, briefcase-sized case, or backpack.
  • the ultrasound system 122 may be a hand-carried device having a size of a typical laptop computer, for instance, having dimensions of approximately 2.5 inches in depth, approximately 14 inches in width, and approximately 12 inches in height.
  • the ultrasound system 122 may weigh about ten pounds, and thus is easily portable by the operator.
  • An integrated display such as the display 134 , may be configured to display an ultrasound image as well as an X-ray image acquired by the X-ray fluoroscopic system 106 .
  • the ultrasound system 122 may be a 3D capable pocket-sized ultrasound system.
  • the pocket-sized ultrasound system may be approximately 2 inches wide, approximately 4 inches in length, and approximately 0.5 inches in depth and weigh less than 3 ounces.
  • the pocket-sized ultrasound system may include a display (e.g. the display 134 ), a user interface (e.g. user input 132 ) and an input/output (I/O) port for connection to the probe 126 .
  • a display e.g. the display 134
  • a user interface e.g. user input 132
  • I/O input/output
  • the various embodiments may be implemented in connection with a miniaturized or pocket-sized ultrasound system having different dimensions, weights, and power consumption.
  • the ultrasound system 122 may be a console-based ultrasound imaging system provided on a movable base.
  • the console-based ultrasound imaging system may also be referred to as a cart-based system.
  • An integrated display e.g. the display 134 ) may be used to display the ultrasound image alone or simultaneously with the X-ray image as discussed herein.
  • the X-ray fluoroscopic system 106 and the ultrasound system 122 may be integrated together and may share at least some processing, user input and memory functions.
  • a probe port 136 may be provided on the table 100 or other apparatus near the subject 102 . The probe 126 may thus be connected to the probe port 136 .
  • a registration module 138 may be used to register the first and second images 118 and 120 with respect to each other, and a tracking module 140 may be used to track a foreign object, such as a guide wire, within one of the images, which is a live image. The movement of the foreign object is indicated within a corresponding static image.
  • the live image is an ultrasound image
  • the static image is an X-ray image.
  • the registration module 138 and the tracking module 140 may be within the ultrasound system 122 or within a separate module or system.
  • FIG. 2 illustrates a method for tracking movement of a foreign object on an image acquired by a first imaging system based on movement of the object within an image acquired by a second imaging system.
  • the foreign object may be any object inserted into the body such as a guide wire, a tip of the guide wire, or a catheter.
  • the two different imaging systems are the X-ray fluoroscopic system 106 and the ultrasound system 122 , both shown in FIG. 1 .
  • a different modality such as a Magnetic Resonance Imaging (MRI) system or a Computer Tomography (CT) system may be used with the ultrasound system 122 .
  • MRI Magnetic Resonance Imaging
  • CT Computer Tomography
  • connection 124 may be used to connect the X-ray fluoroscopic system 106 and the ultrasound system 122 either through a wire or cable, or wirelessly.
  • the probe 126 may be connected to the probe port 136 .
  • real-time X-ray and/or fluoroscopy are used to provide images for initially positioning a guide wire and guidance catheter to a central location in the vascular system of the subject 102 .
  • the central location may be determined by the ultimate desired position of a balloon catheter or a position where other action is desired or needed.
  • the fluoroscopic or X-ray images may be displayed as the first image 118 on the display 116 .
  • a bolus of radio-opaque contrast agent is introduced through the guidance catheter.
  • an X-ray image displaying the location of the guide wire and guidance catheter, as well as the vascular tree pattern, is captured and displayed on the display 116 as the first image 118 . Therefore, the fluoroscopic image used when initially positioning the guide wire may be replaced on the display 116 by a contrast-enhanced X-ray image.
  • the contrast-enhanced X-ray image may be a single fluoroscopic frame, a single X-ray frame, or a digital subtraction angiographic image, where the resulting image is the difference between a pre-contrast and post-contrast injection image. It should be understood that other types of images may be used.
  • the ultimate desired position of the balloon catheter within the vascular system may be within the contrast-enhanced X-ray image.
  • FIG. 3 illustrates a contrast-enhanced X-ray image 150 in accordance with an embodiment of the invention on the display 116 that shows a vascular tree pattern 146 as well as a guide wire 152 and a guidance catheter 154 inserted into a vessel 144 .
  • a tip 156 (shown in FIG. 3 ) of the guide wire 152 is identified.
  • the tip 156 may be the outermost end of the guide wire 152 .
  • the operator may use the user input 114 , such as a cursor, to select the tip 156 .
  • the processor 112 may automatically detect the tip 156 using, for example, boundary detection or other recognition type of algorithm that searches for the guide wire 152 , or may detect the guide wire 152 based on a level of brightness in the X-ray image 150 .
  • Other automatic detection methods and algorithms may be used. In one embodiment, automatic detection may be accomplished within a user defined area or region of interest 158 , while in another embodiment automatic detection may be accomplished across the entire X-ray image 150 .
  • FIG. 4 illustrates the X-ray image 150 and a real-time ultrasound image 160 showing the guide wire 152 .
  • the ultrasound image 160 may be a B-mode image.
  • tip 162 shown in FIG. 4
  • the operator may identify the tip 162 using the one of the user inputs 114 or 132 , or the tip 162 may be automatically identified through automatic image processing.
  • the X-ray image 150 has a fixed geometry based on the X-ray fluoroscopic system 106 that is known, and therefore the position and/or orientation of the guide wire 152 and tip 156 within the X-ray image 150 are also known.
  • the registration module 138 registers the X-ray image 150 and the ultrasound image 160 with respect to each other. Registration of the two images 150 and 160 may be accomplished using any registration process available for registering images acquired using two different modalities and/or two different imaging systems. For example, auto registration and correlation processes may be used based on anatomical similarities.
  • an anatomical point that is visualized in both the X-ray image 150 and the ultrasound image 160 may be defined and/or selected, and may be used as the registration point.
  • the operator may select an intersection of two or more vessels on each of the images 150 and 160 and the registration module 138 may register the two images based on the two selected points.
  • the operator then, at 218 , adjusts the position of the guide wire 152 , feeding the guide wire 152 towards the point or area of interest.
  • the operator may watch the motion of the guide wire 152 in real-time on the ultrasound image 160 while using the X-ray image 150 that shows the vascular tree pattern 146 as a base or reference image.
  • the probe 126 may be moved or adjusted as necessary to view the anatomy of interest.
  • the tip 162 of the guide wire 152 may be indicated on the ultrasound image 160 with an indicator (not shown), and the processor 112 or 130 may automatically update the indicator as the tip 162 moves within the ultrasound image 160 .
  • the tracking module 140 detects movement of the tip 162 of the guide wire 152 in the ultrasound image 160 and a new position of the corresponding tip 156 of the guide wire 152 is indicated on the X-ray image 150 .
  • a position sensor (not shown) may be mounted to or integrated with the tip of the guide wire 152 .
  • the guide wire position sensor reading may be used to update the position on the X-ray image 150 as well as in the ultrasound image.
  • the position may be projected onto the ultrasound image with the relative location reflected in the graphical appearance of the projection.
  • the position sensor may transmit spatial location information wirelessly or through the guide wire 152 .
  • image processing and/or algorithms that may automatically identify the guide wire 152 in the ultrasound image 160 may be used to automatically track movement of the tip 162 of the guide wire 152 .
  • the operator may identify the new location of the tip 162 on the ultrasound image 160 using one of the user inputs 114 or 132 .
  • the processor 112 and/or tracking module 140 then determine and indicate the corresponding location of the tip 156 on the X-ray image 150 . It should be understood that other methods may be used to track, detect, and locate the position of the tip 162 of the guide wire 152 in the ultrasound image 160 .
  • the operator may advance the guide wire 152 to point 164 as shown on the ultrasound image 160 of FIG. 4 .
  • the movement of the guide wire 152 is indicated on the X-ray image 150 as dotted line 166 .
  • the indication on the display 116 may be a line, a dotted line, a dot, point, character such as an “X” or other indicator.
  • the indication may be displayed in a color or may have a different or predetermined intensity.
  • the indication may be a number that is used to indicate a location or to indicate movement based on time, distance, and the like, or any other indication that is visible to the operator so that the operator may track the real-time progress of the guide wire 152 on the static X-ray image 150 .
  • the method loops between 218 and 220 to continuously detect (and possibly separately indicate) movement of the tip 162 of the guide wire 152 within the ultrasound image 160 and to indicate the movement of the corresponding tip 156 on the X-ray image 150 . It should be understood that other foreign objects may be tracked and indicated in the same manner.
  • the operator may take further action based on the treatment or procedure.
  • the guidance catheter may be removed and a balloon catheter may be inserted using the guide wire 152 to position the balloon catheter, such as for angioplasty.
  • Other interventional vascular procedures may be performed, such as ablation, biopsy and the like.
  • a projection 168 (shown on FIG. 4 ) of the face of the probe 126 may be displayed on the X-ray image 150 .
  • the projection 168 is based on the particular probe 126 being used and thus may be a rectangle, as shown, a square or other shape.
  • the orientation of the probe 126 may be specified by the operator or the orientation of the probe face may be specified by using a fixed orientation during the specification of a common point, such as the tips 156 and 162 .
  • a graphic may be adjusted to match the current probe orientation, or the same point in the ultrasound image 160 may be marked from three or more probe face orientations.
  • the projection 168 may be updated based on movement detected by the position sensor 142 .
  • the operator may wish to update the X-ray image 150 with a new subsequent X-ray image showing the vascular tree and the current position of the guide wire 152 .
  • the method may thus return to 204 , wherein a new bolus of X-ray contrast agent is introduced.
  • the subsequent x-ray image may replace the X-ray image 150 .
  • the tip 156 on the X-ray image 150 and optionally, the tip 162 on the ultrasound image 160 may be redefined, and the operator continues to advance the guide wire 152 as desired.
  • the current guide wire indication(s) may be retained from the prior X-ray image(s).
  • the operator may wish to update the X-ray image 150 to redefine the guide wire location without redefining or showing the vascular tree.
  • a new contrast bolus is not used and thus a subsequent X-ray image is captured that does not display the vascular tree.
  • the subsequent X-ray image may be fused with the X-ray image 150 to update the position of the guide wire 152 .
  • multiple guide wires may be superimposed onto the same image.
  • Each of the guide wires may be auto-detected and numbered (or otherwise indicated differently with respect to each other) to provide information regarding the most recent position as well as previous positions.
  • the guide wire 152 may be removed or deleted from one or more previous images to display only the most recent guide wire 152 or to indicate the most recent position of the tip 156 .
  • the guide wire indications may each be toggled on and off, such as to track the movement of the guide wire from one image to the next.
  • the ultrasound system 122 and probe 126 may be capable of real-time 3D imaging, also known as 4D imaging.
  • the real-time 3D image data may be displayed on the display 116 , such as in a volume, to allow real-time 3D tracking of the guide wire.
  • the real-time 3D image data may also be displayed in any other 3D display method known in the art, such as maximum projection, average projection and surface rendering.
  • FIG. 5 illustrates the X-ray image 150 and a real-time ultrasound projection image 180 .
  • the ultrasound system 122 collects real-time 3D imaging data, using a 3D capable probe that has the position sensor 142 . As discussed previously, the operator selects the tip 156 on the X-ray image 150 and the tip 162 on the ultrasound image. Alternatively, one or both of the tips 156 and 162 may be automatically identified.
  • the ultrasound image may be a B-mode ultrasound image 160 as previously discussed.
  • the registration module 138 registers the two images with respect to each other, and the processor 112 forms an ultrasound projection image 180 that has the same orientation as the X-ray image 150 .
  • the projection image 180 is scaled geometrically to match the geometry of the X-ray image 150 .
  • processor 112 may automatically determine or the operator may input one or more anatomical landmarks or points that are used to determine scaling, and possibly orientation, of the images 150 and 180 .
  • the projection image 180 may then be combined with the X-ray image 150 .
  • the projection image 180 may be fused with or overlaid on the X-ray image 150 .
  • the X-ray image 150 may be overlaid on the projection image 180 .
  • the motion of the guide wire 152 may then be visually observed as the guide wire 152 and tip 162 move along the X-ray contrast opaque vessels.
  • the projection image 180 is displayed separately from the X-ray image 150 as shown in FIG. 5 , and the tracking module 140 tracks the movement of the guide wire 152 on the X-ray image 150 as discussed previously.
  • the display 116 may display more than two images, such that one or both of the X-ray and projection images 150 and 180 may be displayed simultaneously with a combined X-ray and projection image.
  • Other ultrasound images may be formed and displayed, such as a C-plane or other plane through the ultrasound volume.
  • the probe 126 is positioned in the same orientation as the X-ray tube 104 , such that the C-plane or slice is perpendicular to the direction of the X-rays.
  • the C-plane may be oriented and scaled geometrically to match the X-ray image 150 orientation and dimensions, and may be overlaid on the X-ray image 150 .
  • the operator may then modify the depth of the C-plane that is displayed, allowing tracking of the movement of the guide wire 152 in the depth direction.
  • the operator may adjust the position of the plane, but this may not correlate with the depth as defined by the orientation of the X-ray image 150 .
  • the C-plane or other plane may be displayed simultaneously with the X-ray image 150 and/or simultaneously with an image that combines the X-ray image 150 and the ultrasound plane.
  • the ultrasound system 122 may acquire 2D ultrasound image data.
  • a slice or plane of 2D ultrasound data may be selected from an acquired ultrasound volume.
  • the 2D dataset may be overlaid, fused or otherwise combined with the X-ray image 150 (or the X-ray image 150 may be overlaid on the 2D dataset) and displayed on the display 116 as a single image.
  • the ultrasound system 122 may be used to evaluate a procedure immediately, such as immediately post-angioplasty, to non-invasively document the absence of a flow reducing stenosis or to identify additional areas of concern. For example, B-mode, color and spectral Doppler modes and the like may be used. Also, the use of the ultrasound system 122 may lead to less mistakes in the navigation of the guide wire 152 .
  • ultrasound contrast agent may be introduced into the subject 102 .
  • a 3D ultrasound vascular image may then be acquired and used as the base or reference image rather than the contrast-enhanced X-ray image 150 .
  • the ultrasound vascular image may be, for example, a rendered ultrasound image of the contrast agent or a projection image, and is used together with the live ultrasound image 160 for guidance of the guide wire 152 .
  • a technical effect of at least one embodiment is the ability to guide the movement and placement of a guide wire and/or catheter or other foreign object using two imaging modalities at the same time.
  • One imaging modality may be X-ray fluoroscopy in which a bolus of contrast agent is introduced so that the vascular tree may be imaged and displayed.
  • the other imaging modality may be ultrasound wherein the static contrast-enhanced X-ray image and the real-time ultrasound image are registered with respect to each other. The operator may then utilize both the X-ray image and the real-time ultrasound image to advance the guide wire.
  • the amount of contrast that needs to be given to the subject may be decreased, thus decreasing the possible side effects of the contrast, such as nephrotoxicity.
  • fluoroscopy is not being continuously performed throughout the procedure, the operator, subject and other staff receive less X-ray radiation compared to procedures conducted using only X-ray.

Abstract

An apparatus for tracking movement of a foreign object within a subject has an X-ray fluoroscopic system with an X-ray detector and an ultrasound system that has a probe with a position sensor. A display is configured to display a static X-ray image acquired by the X-ray fluoroscopic system and a real-time ultrasound image acquired by the ultrasound system. The X-ray image and the ultrasound image each display at least a portion of the foreign object and at least a portion of surrounding area. A tracking module is configured to track movement of the foreign object within the ultrasound image and the display is further configured to display an indication of the movement of the foreign object on the X-ray image

Description

    BACKGROUND OF THE INVENTION
  • This invention relates generally to dual modality imaging and more particularly to vascular interventional radiology.
  • Vascular interventional radiology often involves angioplasty using a balloon catheter. Once in place, such as in an area of stenosis, the balloon is inflated, compressing the plaque against the walls of the vessel with the purpose of creating a larger lumen. Traditionally, fluoroscopy is used to track the insertion of a guide wire in real-time to an area in which the balloon catheter will be deployed. Vasculature is not visible on the fluoroscopic images, and thus a bolus of contrast is often injected through a guidance catheter to provide an image of the arterial tree. Precise guidance of the guide wire and catheter are needed to avoid damage to anatomical structures.
  • As the positioning of the guide wire involves real-time fluoroscopic imaging, the subject or patient typically receives a high dose of radiation over the course of the procedure, as do persons standing nearby. In addition, the contrast agent is quickly cleared by the body, and thus multiple doses of contrast are often injected, which in some cases may result in contrast induced nephrotoxicity, as well as additional cost.
  • BRIEF DESCRIPTION OF THE INVENTION
  • In one embodiment, an apparatus for tracking movement of a foreign object within a subject has an X-ray fluoroscopic system with an X-ray detector and an ultrasound system that has a probe with a position sensor. A display is configured to display a static X-ray image acquired by the X-ray fluoroscopic system and a real-time ultrasound image acquired by the ultrasound system. The X-ray image and the ultrasound image each display at least a portion of the foreign object and at least a portion of surrounding area. A tracking module is configured to track movement of the foreign object within the ultrasound image and the display is further configured to display an indication of the movement of the foreign object on the X-ray image.
  • In another embodiment, a method for positioning a guide wire within a subject comprises displaying a static X-ray image comprising at least a tip of a guide wire and vessels indicated by contrast. A live ultrasound image is displayed that includes at least the tip of the guide wire and at least a portion of the vessels. The guide wire is identified on both the X-ray image and the ultrasound image. Movement of the guide wire is indicated on the X-ray image based on movement of the guide wire that is detected in the ultrasound image.
  • In yet another embodiment, an apparatus for positioning a guide wire within the vasculature of a subject has an X-ray detector configured to detect X-rays that are generated by an X-ray tube and transmitted through a subject. An ultrasound probe has a position sensor. At least one display is configured to display a static contrast-enhanced X-ray image that is detected by the X-ray detector and a real-time ultrasound image that is acquired by the ultrasound probe. The X-ray image and the ultrasound image display at least a portion of a guide wire. A registration module is configured to register the X-ray and ultrasound images with respect to each other based on a point identified in each of the X-ray and ultrasound images. The display is further configured to display an indication of movement of the guide wire on the X-ray image based on movement of the guide wire detected within the ultrasound image.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates an ultrasound system interconnected with an X-ray fluoroscopic system formed in accordance with an embodiment of the present invention.
  • FIG. 2 illustrates a method for tracking movement of a foreign object on an image acquired by a first imaging system based on movement of the object within an image acquired by a second imaging system in accordance with an embodiment of the present invention.
  • FIG. 3 illustrates a contrast-enhanced X-ray image on a display that shows the vascular tree pattern and a guide wire and guidance catheter inserted into a vessel in accordance with an embodiment of the present invention.
  • FIG. 4 illustrates the X-ray image and a real-time ultrasound image showing a guide wire in accordance with an embodiment of the present invention.
  • FIG. 5 illustrates the X-ray image and a real-time ultrasound projection image in accordance with an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The foregoing summary, as well as the following detailed description of certain embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. To the extent that the figures illustrate diagrams of the functional blocks of various embodiments, the functional blocks are not necessarily indicative of the division between hardware circuitry. Thus, for example, one or more of the functional blocks (e.g., processors or memories) may be implemented in a single piece of hardware (e.g., a general purpose signal processor or random access memory, hard disk, or the like). Similarly, the programs may be stand alone programs, may be incorporated as subroutines in an operating system, may be functions in an installed software package, and the like. It should be understood that the various embodiments are not limited to the arrangements and instrumentality shown in the drawings.
  • As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property.
  • FIG. 1 illustrates an ultrasound system interconnected with an X-ray fluoroscopic system in accordance with an embodiment of the present invention. A table 100 or bed is provided for supporting a subject 102. An X-ray tube 104 or other generator is connected to an X-ray fluoroscopic system 106. As shown, the X-ray tube 104 is positioned above the subject 102, but it should be understood that the X-ray tube 104 may be moved to other positions with respect to the subject 102. A detector 108 is positioned opposite the X-ray tube 104 with the subject 102 there-between. The detector 108 may be any known detector capable of detecting X-ray radiation.
  • The X-ray fluoroscopic system 106 has at least a memory 110, a processor 112 and at least one user input 114, such as a keyboard, trackball, pointer, touch panel, and the like. To acquire an X-ray image, the X-ray fluoroscopic system 106 causes the X-ray tube 104 to generate X-rays and the detector 108 detects an image. Fluoroscopy may be accomplished by activating the X-ray tube 104 continuously or at predetermined intervals while the detector 108 detects corresponding images. Detected image(s) may be displayed on a display 116 that may be configured to display a single image or more than one image at the same time.
  • An ultrasound system 122 communicates with the X-ray fluoroscopic system 106 via a connection 124. The connection 124 may be a wired or wireless connection. The ultrasound system 122 may transmit or convey ultrasound imaging data to the X-ray fluoroscopic system 106. The communication between the systems 106 and 122 may be one-way or two-way, allowing image data, commands and information to be transmitted between the two systems 106 and 122. The ultrasound system 122 may be a stand-alone system that may be moved from room to room, such as a cart-based system, hand-carried system, or other portable system.
  • An operator (not shown) may position an ultrasound probe 126 on the subject 102 to image an area of interest within the subject 102. The ultrasound probe 126 has a position sensor 142. The ultrasound system 122 has at least a memory 128, a processor 130, and a user input 132. Optionally, if the ultrasound system 122 is a stand-alone system, a display 134 may be provided. By way of example, images acquired using the X-ray fluoroscopic system 106 may be displayed as a first image 118 and images acquired using the ultrasound system 122 may be displayed as a second image 120 on the display 116, forming a dual display configuration. In another embodiment, two side-by-side monitors (not shown) may be used. The images acquired by both the X-ray fluoroscopic system 106 and the ultrasound system 122 may be acquired in known manners.
  • In one embodiment, the ultrasound system 122 may be a 3D-capable miniaturized ultrasound system that is connected to the X-ray fluoroscopic system 106 via the connection 124. As used herein, “miniaturized” means that the ultrasound system 122 is configured to be carried in a person's hand, pocket, briefcase-sized case, or backpack. For example, the ultrasound system 122 may be a hand-carried device having a size of a typical laptop computer, for instance, having dimensions of approximately 2.5 inches in depth, approximately 14 inches in width, and approximately 12 inches in height. The ultrasound system 122 may weigh about ten pounds, and thus is easily portable by the operator. An integrated display, such as the display 134, may be configured to display an ultrasound image as well as an X-ray image acquired by the X-ray fluoroscopic system 106.
  • As another example, the ultrasound system 122 may be a 3D capable pocket-sized ultrasound system. By way of example, the pocket-sized ultrasound system may be approximately 2 inches wide, approximately 4 inches in length, and approximately 0.5 inches in depth and weigh less than 3 ounces. The pocket-sized ultrasound system may include a display (e.g. the display 134), a user interface (e.g. user input 132) and an input/output (I/O) port for connection to the probe 126. It should be noted that the various embodiments may be implemented in connection with a miniaturized or pocket-sized ultrasound system having different dimensions, weights, and power consumption.
  • In another embodiment, the ultrasound system 122 may be a console-based ultrasound imaging system provided on a movable base. The console-based ultrasound imaging system may also be referred to as a cart-based system. An integrated display (e.g. the display 134) may be used to display the ultrasound image alone or simultaneously with the X-ray image as discussed herein.
  • In yet another embodiment, the X-ray fluoroscopic system 106 and the ultrasound system 122 may be integrated together and may share at least some processing, user input and memory functions. For example, a probe port 136 may be provided on the table 100 or other apparatus near the subject 102. The probe 126 may thus be connected to the probe port 136.
  • A registration module 138 may be used to register the first and second images 118 and 120 with respect to each other, and a tracking module 140 may be used to track a foreign object, such as a guide wire, within one of the images, which is a live image. The movement of the foreign object is indicated within a corresponding static image. In one example, the live image is an ultrasound image and the static image is an X-ray image. Although shown within the X-ray fluoroscopic system 106, the registration module 138 and the tracking module 140 may be within the ultrasound system 122 or within a separate module or system.
  • FIG. 2 illustrates a method for tracking movement of a foreign object on an image acquired by a first imaging system based on movement of the object within an image acquired by a second imaging system. The foreign object may be any object inserted into the body such as a guide wire, a tip of the guide wire, or a catheter. In this example the two different imaging systems are the X-ray fluoroscopic system 106 and the ultrasound system 122, both shown in FIG. 1. In another embodiment, a different modality, such as a Magnetic Resonance Imaging (MRI) system or a Computer Tomography (CT) system may be used with the ultrasound system 122.
  • At 200, the first and second imaging systems are interconnected. For example, connection 124 may be used to connect the X-ray fluoroscopic system 106 and the ultrasound system 122 either through a wire or cable, or wirelessly. In another embodiment, if the two imaging systems are integrated into a single system, the probe 126 may be connected to the probe port 136.
  • At 202 real-time X-ray and/or fluoroscopy are used to provide images for initially positioning a guide wire and guidance catheter to a central location in the vascular system of the subject 102. The central location may be determined by the ultimate desired position of a balloon catheter or a position where other action is desired or needed. The fluoroscopic or X-ray images may be displayed as the first image 118 on the display 116.
  • When the tip of the guide wire has reached the desired initial position, at 204 a bolus of radio-opaque contrast agent is introduced through the guidance catheter. At 206, an X-ray image displaying the location of the guide wire and guidance catheter, as well as the vascular tree pattern, is captured and displayed on the display 116 as the first image 118. Therefore, the fluoroscopic image used when initially positioning the guide wire may be replaced on the display 116 by a contrast-enhanced X-ray image. By way of example, the contrast-enhanced X-ray image may be a single fluoroscopic frame, a single X-ray frame, or a digital subtraction angiographic image, where the resulting image is the difference between a pre-contrast and post-contrast injection image. It should be understood that other types of images may be used. In one embodiment, the ultimate desired position of the balloon catheter within the vascular system may be within the contrast-enhanced X-ray image.
  • FIG. 3 illustrates a contrast-enhanced X-ray image 150 in accordance with an embodiment of the invention on the display 116 that shows a vascular tree pattern 146 as well as a guide wire 152 and a guidance catheter 154 inserted into a vessel 144. Returning to FIG. 2, at 208 a tip 156 (shown in FIG. 3) of the guide wire 152 is identified. The tip 156 may be the outermost end of the guide wire 152. For example, the operator may use the user input 114, such as a cursor, to select the tip 156. Alternatively, the processor 112 may automatically detect the tip 156 using, for example, boundary detection or other recognition type of algorithm that searches for the guide wire 152, or may detect the guide wire 152 based on a level of brightness in the X-ray image 150. Other automatic detection methods and algorithms may be used. In one embodiment, automatic detection may be accomplished within a user defined area or region of interest 158, while in another embodiment automatic detection may be accomplished across the entire X-ray image 150.
  • At 210 the operator scans the subject 102 with the ultrasound probe 126, and at 212 the live ultrasound image is displayed on the display 116 as the second image 120. FIG. 4 illustrates the X-ray image 150 and a real-time ultrasound image 160 showing the guide wire 152. By way of example only, the ultrasound image 160 may be a B-mode image. At 214 of FIG. 2, tip 162 (shown in FIG. 4) of the guide wire 152 is identified in the ultrasound image 160. The operator may identify the tip 162 using the one of the user inputs 114 or 132, or the tip 162 may be automatically identified through automatic image processing.
  • The X-ray image 150 has a fixed geometry based on the X-ray fluoroscopic system 106 that is known, and therefore the position and/or orientation of the guide wire 152 and tip 156 within the X-ray image 150 are also known. Using position information from the position sensor 142 of the probe 126 and the identified locations of the tips 156 and 162 in the images 150 and 160, at 216 the registration module 138 registers the X-ray image 150 and the ultrasound image 160 with respect to each other. Registration of the two images 150 and 160 may be accomplished using any registration process available for registering images acquired using two different modalities and/or two different imaging systems. For example, auto registration and correlation processes may be used based on anatomical similarities.
  • In another embodiment, an anatomical point that is visualized in both the X-ray image 150 and the ultrasound image 160 may be defined and/or selected, and may be used as the registration point. For example, the operator may select an intersection of two or more vessels on each of the images 150 and 160 and the registration module 138 may register the two images based on the two selected points.
  • The operator then, at 218, adjusts the position of the guide wire 152, feeding the guide wire 152 towards the point or area of interest. The operator may watch the motion of the guide wire 152 in real-time on the ultrasound image 160 while using the X-ray image 150 that shows the vascular tree pattern 146 as a base or reference image. The probe 126 may be moved or adjusted as necessary to view the anatomy of interest. In some embodiments, the tip 162 of the guide wire 152 may be indicated on the ultrasound image 160 with an indicator (not shown), and the processor 112 or 130 may automatically update the indicator as the tip 162 moves within the ultrasound image 160.
  • At 220 the tracking module 140 detects movement of the tip 162 of the guide wire 152 in the ultrasound image 160 and a new position of the corresponding tip 156 of the guide wire 152 is indicated on the X-ray image 150. For example, a position sensor (not shown) may be mounted to or integrated with the tip of the guide wire 152. The guide wire position sensor reading may be used to update the position on the X-ray image 150 as well as in the ultrasound image. In cases where the guide wire 152 is outside of the current ultrasound image, the position may be projected onto the ultrasound image with the relative location reflected in the graphical appearance of the projection. For example, the position sensor may transmit spatial location information wirelessly or through the guide wire 152. Alternatively, image processing and/or algorithms that may automatically identify the guide wire 152 in the ultrasound image 160, such as at 214, may be used to automatically track movement of the tip 162 of the guide wire 152. In another embodiment, after adjusting the guide wire 152 to a new location, the operator may identify the new location of the tip 162 on the ultrasound image 160 using one of the user inputs 114 or 132. The processor 112 and/or tracking module 140 then determine and indicate the corresponding location of the tip 156 on the X-ray image 150. It should be understood that other methods may be used to track, detect, and locate the position of the tip 162 of the guide wire 152 in the ultrasound image 160.
  • For example, the operator may advance the guide wire 152 to point 164 as shown on the ultrasound image 160 of FIG. 4. The movement of the guide wire 152 is indicated on the X-ray image 150 as dotted line 166. The indication on the display 116 may be a line, a dotted line, a dot, point, character such as an “X” or other indicator. In another embodiment, the indication may be displayed in a color or may have a different or predetermined intensity. In yet another embodiment, the indication may be a number that is used to indicate a location or to indicate movement based on time, distance, and the like, or any other indication that is visible to the operator so that the operator may track the real-time progress of the guide wire 152 on the static X-ray image 150.
  • The method loops between 218 and 220 to continuously detect (and possibly separately indicate) movement of the tip 162 of the guide wire 152 within the ultrasound image 160 and to indicate the movement of the corresponding tip 156 on the X-ray image 150. It should be understood that other foreign objects may be tracked and indicated in the same manner.
  • Once the tip 162 of the guide wire 152 is positioned in the desired region of the vessel, the operator may take further action based on the treatment or procedure. For example, the guidance catheter may be removed and a balloon catheter may be inserted using the guide wire 152 to position the balloon catheter, such as for angioplasty. Other interventional vascular procedures may be performed, such as ablation, biopsy and the like.
  • In one embodiment, a projection 168 (shown on FIG. 4) of the face of the probe 126 may be displayed on the X-ray image 150. The projection 168 is based on the particular probe 126 being used and thus may be a rectangle, as shown, a square or other shape. For example, the orientation of the probe 126 may be specified by the operator or the orientation of the probe face may be specified by using a fixed orientation during the specification of a common point, such as the tips 156 and 162. Alternatively, a graphic may be adjusted to match the current probe orientation, or the same point in the ultrasound image 160 may be marked from three or more probe face orientations. The projection 168 may be updated based on movement detected by the position sensor 142.
  • In some situations, the operator may wish to update the X-ray image 150 with a new subsequent X-ray image showing the vascular tree and the current position of the guide wire 152. The method may thus return to 204, wherein a new bolus of X-ray contrast agent is introduced. The subsequent x-ray image may replace the X-ray image 150. The tip 156 on the X-ray image 150 and optionally, the tip 162 on the ultrasound image 160, may be redefined, and the operator continues to advance the guide wire 152 as desired. Alternatively, the current guide wire indication(s) may be retained from the prior X-ray image(s).
  • In another embodiment, the operator may wish to update the X-ray image 150 to redefine the guide wire location without redefining or showing the vascular tree. In this example, a new contrast bolus is not used and thus a subsequent X-ray image is captured that does not display the vascular tree. The subsequent X-ray image may be fused with the X-ray image 150 to update the position of the guide wire 152. If multiple X-ray images are taken over time, multiple guide wires may be superimposed onto the same image. Each of the guide wires may be auto-detected and numbered (or otherwise indicated differently with respect to each other) to provide information regarding the most recent position as well as previous positions. Alternatively, the guide wire 152 may be removed or deleted from one or more previous images to display only the most recent guide wire 152 or to indicate the most recent position of the tip 156. In another embodiment, the guide wire indications may each be toggled on and off, such as to track the movement of the guide wire from one image to the next.
  • In some embodiments the ultrasound system 122 and probe 126 may be capable of real-time 3D imaging, also known as 4D imaging. The real-time 3D image data may be displayed on the display 116, such as in a volume, to allow real-time 3D tracking of the guide wire.
  • The real-time 3D image data may also be displayed in any other 3D display method known in the art, such as maximum projection, average projection and surface rendering. FIG. 5 illustrates the X-ray image 150 and a real-time ultrasound projection image 180. The ultrasound system 122 collects real-time 3D imaging data, using a 3D capable probe that has the position sensor 142. As discussed previously, the operator selects the tip 156 on the X-ray image 150 and the tip 162 on the ultrasound image. Alternatively, one or both of the tips 156 and 162 may be automatically identified. The ultrasound image may be a B-mode ultrasound image 160 as previously discussed. The registration module 138 registers the two images with respect to each other, and the processor 112 forms an ultrasound projection image 180 that has the same orientation as the X-ray image 150.
  • In one embodiment, the projection image 180 is scaled geometrically to match the geometry of the X-ray image 150. In this example, processor 112 may automatically determine or the operator may input one or more anatomical landmarks or points that are used to determine scaling, and possibly orientation, of the images 150 and 180. The projection image 180 may then be combined with the X-ray image 150. For example, the projection image 180 may be fused with or overlaid on the X-ray image 150. Optionally, the X-ray image 150 may be overlaid on the projection image 180. The motion of the guide wire 152 may then be visually observed as the guide wire 152 and tip 162 move along the X-ray contrast opaque vessels. In a different embodiment, the projection image 180 is displayed separately from the X-ray image 150 as shown in FIG. 5, and the tracking module 140 tracks the movement of the guide wire 152 on the X-ray image 150 as discussed previously. In another embodiment, the display 116 may display more than two images, such that one or both of the X-ray and projection images 150 and 180 may be displayed simultaneously with a combined X-ray and projection image.
  • Other ultrasound images may be formed and displayed, such as a C-plane or other plane through the ultrasound volume. In the example of the C-plane, the probe 126 is positioned in the same orientation as the X-ray tube 104, such that the C-plane or slice is perpendicular to the direction of the X-rays. The C-plane may be oriented and scaled geometrically to match the X-ray image 150 orientation and dimensions, and may be overlaid on the X-ray image 150. The operator may then modify the depth of the C-plane that is displayed, allowing tracking of the movement of the guide wire 152 in the depth direction. If displaying a plane that is not the C-plane, the operator may adjust the position of the plane, but this may not correlate with the depth as defined by the orientation of the X-ray image 150. As with the ultrasound projection image 180, the C-plane or other plane may be displayed simultaneously with the X-ray image 150 and/or simultaneously with an image that combines the X-ray image 150 and the ultrasound plane.
  • In another embodiment, the ultrasound system 122 may acquire 2D ultrasound image data. Alternatively, a slice or plane of 2D ultrasound data may be selected from an acquired ultrasound volume. The 2D dataset may be overlaid, fused or otherwise combined with the X-ray image 150 (or the X-ray image 150 may be overlaid on the 2D dataset) and displayed on the display 116 as a single image.
  • In addition to tracking the guide wire 152, the ultrasound system 122 may be used to evaluate a procedure immediately, such as immediately post-angioplasty, to non-invasively document the absence of a flow reducing stenosis or to identify additional areas of concern. For example, B-mode, color and spectral Doppler modes and the like may be used. Also, the use of the ultrasound system 122 may lead to less mistakes in the navigation of the guide wire 152.
  • In another embodiment, once the guide wire 152 has been advanced to the initial position, such as at 202 of FIG. 2, ultrasound contrast agent may be introduced into the subject 102. A 3D ultrasound vascular image may then be acquired and used as the base or reference image rather than the contrast-enhanced X-ray image 150. The ultrasound vascular image may be, for example, a rendered ultrasound image of the contrast agent or a projection image, and is used together with the live ultrasound image 160 for guidance of the guide wire 152.
  • A technical effect of at least one embodiment is the ability to guide the movement and placement of a guide wire and/or catheter or other foreign object using two imaging modalities at the same time. One imaging modality may be X-ray fluoroscopy in which a bolus of contrast agent is introduced so that the vascular tree may be imaged and displayed. The other imaging modality may be ultrasound wherein the static contrast-enhanced X-ray image and the real-time ultrasound image are registered with respect to each other. The operator may then utilize both the X-ray image and the real-time ultrasound image to advance the guide wire. The amount of contrast that needs to be given to the subject may be decreased, thus decreasing the possible side effects of the contrast, such as nephrotoxicity. Also, because fluoroscopy is not being continuously performed throughout the procedure, the operator, subject and other staff receive less X-ray radiation compared to procedures conducted using only X-ray.
  • It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. While the dimensions and types of materials described herein are intended to define the parameters of the invention, they are by no means limiting and are exemplary embodiments. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
  • This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.

Claims (20)

1. An apparatus for tracking movement of a foreign object within a subject, the apparatus comprising:
an X-ray fluoroscopic system comprising an X-ray detector;
an ultrasound system comprising a probe having a position sensor;
a display configured to display a static X-ray image acquired by the X-ray fluoroscopic system and a real-time ultrasound image acquired by the ultrasound system, the X-ray image and the ultrasound image each displaying at least a portion of the foreign object and at least a portion of surrounding area; and
a tracking module configured to track movement of the foreign object within the ultrasound image, the display further configured to display an indication of the movement of the foreign object on the X-ray image.
2. The apparatus of claim 1, further comprising one of a wired connection and a wireless connection interconnecting the X-ray fluoroscopic system and the ultrasound system, the wired or wireless connection configured to convey at least imaging data between the ultrasound system and the X-ray fluoroscopic system.
3. The apparatus of claim 1, wherein the ultrasound system and the X-ray fluoroscopic system are integrated together into one system.
4. The apparatus of claim 1, further comprising a user input for identifying a tip of the foreign object on at least one of the X-ray image and the ultrasound image.
5. The apparatus of claim 1, further comprising a processor configured to automatically identify a tip of the foreign object on at least one of the X-ray image and the ultrasound image.
6. The apparatus of claim 1, further comprising a registration module configured to register the X-ray and ultrasound images with respect to each other based on at least one point identified in each of the X-ray and ultrasound images.
7. The apparatus of claim 1, wherein the indication of the movement on the X-ray image is one of a number, a line, a dotted line, displayed in a different color than a color of the foreign object in the X-ray image, and displayed in a different intensity than an intensity of the foreign object in the X-ray image.
8. The apparatus of claim 1, wherein the display is further configured to display a projection of a face of the probe on the X-ray image.
9. The apparatus of claim 1, wherein the X-ray image is a contrast-enhanced X-ray image.
10. A method for positioning a guide wire within a subject, the method comprising:
displaying a static X-ray image comprising at least a tip of a guide wire and vessels indicated by contrast;
displaying a live ultrasound image comprising at least the tip of the guide wire and at least a portion of the vessels;
identifying the guide wire on both the X-ray image and the ultrasound image; and
indicating movement of the guide wire on the X-ray image based on movement of the guide wire detected in the ultrasound image.
11. The method of claim 10, further comprising:
receiving inputs associated with the X-ray image and the ultrasound image; and
registering the X-ray and ultrasound images based on the inputs.
12. The method of claim 10, the identifying further comprising identifying a region of interest associated with the X-ray image, the tip of the guide wire being automatically detected within the region of interest.
13. The method of claim 10, further comprising displaying the X-ray image and the ultrasound image simultaneously on one of a single display and two displays positioned side-by-side.
14. The method of claim 10, wherein the ultrasound image comprises one of a projection image, a 2D dataset and a 3D dataset, the method further comprising:
combining the ultrasound image and the X-ray image; and
displaying at least the combined image.
15. The method of claim 10, wherein the ultrasound image is a plane representative of ultrasound data from within a 3D volume of data, the method further comprising at least one of displaying the plane overlaid on the X-ray image and displaying the plane simultaneously with the X-ray image.
16. The method of claim 10, further comprising:
acquiring a subsequent X-ray image, the subsequent X-ray image displaying at least the tip of the guide wire; and
combining the subsequent X-ray image and the X-ray image to display a new position of the tip of the guide wire.
17. The method of claim 10, further comprising:
acquiring at least one subsequent X-ray image, the at least one subsequent X-ray image displaying the guide wire;
deleting the guide wire on the X-ray image; and
combining the subsequent X-ray image and the X-ray image.
18. An apparatus for positioning a guide wire within the vasculature of a subject, the apparatus comprising:
an X-ray detector configured to detect X-rays that are generated by an X-ray tube and transmitted through the subject;
an ultrasound probe comprising a position sensor;
at least one display configured to display a static contrast-enhanced X-ray image detected by the X-ray detector and a real-time ultrasound image acquired by the ultrasound probe, the X-ray image and the ultrasound image displaying at least a portion of a guide wire; and
a registration module configured to register the X-ray and ultrasound images with respect to each other based on a point identified in each of the X-ray and ultrasound images, the display further configured to display an indication of movement of the guide wire on the X-ray image based on movement of the guide wire detected within the ultrasound image.
19. The apparatus of claim 18, wherein the X-ray detector is further configured to acquire a subsequent X-ray image, the subsequent X-ray image displaying at least a tip of the guide wire, the display further configured to combine the subsequent X-ray image and the X-ray image.
20. The apparatus of claim 18, wherein the X-ray detector is further configured to acquire a subsequent X-ray image, the subsequent X-ray image displaying at least a tip of the guide wire, the display further configured to combine the subsequent X-ray image and the X-ray image and to indicate the guide wire of the subsequent X-ray image differently than the guide wire of the X-ray image.
US12/205,599 2008-09-05 2008-09-05 Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging Abandoned US20100063400A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/205,599 US20100063400A1 (en) 2008-09-05 2008-09-05 Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging
JP2009193753A JP5639352B2 (en) 2008-09-05 2009-08-25 Device for tracking the movement of foreign objects in a subject
US14/721,145 US9468413B2 (en) 2008-09-05 2015-05-26 Method and apparatus for catheter guidance using a combination of ultrasound and X-ray imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/205,599 US20100063400A1 (en) 2008-09-05 2008-09-05 Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/721,145 Division US9468413B2 (en) 2008-09-05 2015-05-26 Method and apparatus for catheter guidance using a combination of ultrasound and X-ray imaging

Publications (1)

Publication Number Publication Date
US20100063400A1 true US20100063400A1 (en) 2010-03-11

Family

ID=41799859

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/205,599 Abandoned US20100063400A1 (en) 2008-09-05 2008-09-05 Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging
US14/721,145 Expired - Fee Related US9468413B2 (en) 2008-09-05 2015-05-26 Method and apparatus for catheter guidance using a combination of ultrasound and X-ray imaging

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/721,145 Expired - Fee Related US9468413B2 (en) 2008-09-05 2015-05-26 Method and apparatus for catheter guidance using a combination of ultrasound and X-ray imaging

Country Status (2)

Country Link
US (2) US20100063400A1 (en)
JP (1) JP5639352B2 (en)

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100152583A1 (en) * 2008-12-16 2010-06-17 General Electric Company Medical imaging system and method containing ultrasound docking port
US20110034801A1 (en) * 2009-08-06 2011-02-10 Siemens Medical Solutions Usa, Inc. System for Processing Angiography and Ultrasound Image Data
ITGE20100076A1 (en) * 2010-07-07 2012-01-08 Esaote Spa IMAGING METHOD AND DEVICE FOR THE MONITORING OF AN EXAMINED BODY
CN103313661A (en) * 2011-01-13 2013-09-18 皇家飞利浦电子股份有限公司 Visualization of catheter in three-dimensional ultrasound
US20130317356A1 (en) * 2011-01-28 2013-11-28 Koninklijke Philips N.V. Reference markers for launch point identification in optical shape sensing systems
US20140024918A1 (en) * 2011-03-29 2014-01-23 Fujifilm Corporation Photoacoustic imaging method and photoacoustic imaging apparatus
CN103717136A (en) * 2011-07-29 2014-04-09 皇家飞利浦有限公司 Accurate visualization of soft tissue motion on x-ray
JP2014158695A (en) * 2013-01-22 2014-09-04 Toshiba Corp X-ray diagnostic device and ultrasound diagnostic device
CN104411249A (en) * 2012-05-31 2015-03-11 皇家飞利浦有限公司 Ultrasound imaging system and method for image guidance procedure
JP2016502441A (en) * 2012-12-03 2016-01-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Integration of ultrasound and X-ray modalities
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9383263B2 (en) 2012-12-21 2016-07-05 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
US9478940B2 (en) 2012-10-05 2016-10-25 Volcano Corporation Systems and methods for amplifying light
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US9510805B2 (en) 2013-09-26 2016-12-06 Fujifilm Corporation Complex diagnostic apparatus, complex diagnostic system, ultrasound diagnostic apparatus, X-ray diagnostic apparatus and complex diagnostic image-generating method
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US9622706B2 (en) 2007-07-12 2017-04-18 Volcano Corporation Catheter for in vivo imaging
US9684972B2 (en) 2012-02-03 2017-06-20 Koninklijke Philips N.V. Imaging apparatus for imaging an object
US9709379B2 (en) 2012-12-20 2017-07-18 Volcano Corporation Optical coherence tomography system that is reconfigurable between different imaging modes
US9724071B2 (en) 2010-09-30 2017-08-08 Koninklijke Philips N.V. Detection of bifurcations using traceable imaging device and imaging tool
US9730613B2 (en) 2012-12-20 2017-08-15 Volcano Corporation Locating intravascular images
US9770172B2 (en) 2013-03-07 2017-09-26 Volcano Corporation Multimodal segmentation in intravascular images
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US20180235573A1 (en) * 2017-02-21 2018-08-23 General Electric Company Systems and methods for intervention guidance using a combination of ultrasound and x-ray imaging
US20180235701A1 (en) * 2017-02-21 2018-08-23 General Electric Company Systems and methods for intervention guidance using pre-operative planning with ultrasound
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US10219780B2 (en) 2007-07-12 2019-03-05 Volcano Corporation OCT-IVUS catheter for concurrent luminal imaging
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US10238367B2 (en) 2012-12-13 2019-03-26 Volcano Corporation Devices, systems, and methods for targeted cannulation
CN109715054A (en) * 2016-09-23 2019-05-03 皇家飞利浦有限公司 The visualization of image object relevant to the instrument in external image
US10278616B2 (en) 2015-05-12 2019-05-07 Navix International Limited Systems and methods for tracking an intrabody catheter
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10332228B2 (en) 2012-12-21 2019-06-25 Volcano Corporation System and method for graphical processing of medical data
JP2019130224A (en) * 2018-02-02 2019-08-08 キヤノンメディカルシステムズ株式会社 Medical image diagnostic apparatus and X-ray irradiation control apparatus
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10420530B2 (en) 2012-12-21 2019-09-24 Volcano Corporation System and method for multipath processing of image signals
US10426590B2 (en) 2013-03-14 2019-10-01 Volcano Corporation Filters with echogenic characteristics
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US10595820B2 (en) 2012-12-20 2020-03-24 Philips Image Guided Therapy Corporation Smooth transition catheters
US10638939B2 (en) 2013-03-12 2020-05-05 Philips Image Guided Therapy Corporation Systems and methods for diagnosing coronary microvascular disease
US10709507B2 (en) 2016-11-16 2020-07-14 Navix International Limited Real-time display of treatment-related tissue changes using virtual material
US10724082B2 (en) 2012-10-22 2020-07-28 Bio-Rad Laboratories, Inc. Methods for analyzing DNA
US10758207B2 (en) 2013-03-13 2020-09-01 Philips Image Guided Therapy Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
US10828106B2 (en) 2015-05-12 2020-11-10 Navix International Limited Fiducial marking for image-electromagnetic field registration
US10881455B2 (en) 2015-05-12 2021-01-05 Navix International Limited Lesion assessment by dielectric property analysis
US10925684B2 (en) 2015-05-12 2021-02-23 Navix International Limited Contact quality assessment by dielectric property analysis
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US10993694B2 (en) 2012-12-21 2021-05-04 Philips Image Guided Therapy Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
US11010983B2 (en) 2016-11-16 2021-05-18 Navix International Limited Tissue model dynamic visual rendering
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US11284813B2 (en) 2016-11-16 2022-03-29 Navix International Limited Real-time display of tissue deformation by interactions with an intra-body probe
US11331029B2 (en) 2016-11-16 2022-05-17 Navix International Limited Esophagus position detection by electrical mapping
US11350996B2 (en) 2016-07-14 2022-06-07 Navix International Limited Characteristic track catheter navigation
US11373361B2 (en) * 2012-11-06 2022-06-28 Koninklijke Philips N.V. Enhancing ultrasound images
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US11622713B2 (en) 2016-11-16 2023-04-11 Navix International Limited Estimators for ablation effectiveness
US11857374B2 (en) * 2017-07-26 2024-01-02 Koninklijke Philips N.V. Registration of x-ray and ultrasound images

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925333B (en) 2007-11-26 2014-02-12 C·R·巴德股份有限公司 Integrated system for intravascular placement of catheter
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
WO2011150376A1 (en) 2010-05-28 2011-12-01 C.R. Bard, Inc. Apparatus for use with needle insertion guidance system
JP5675930B2 (en) * 2013-10-28 2015-02-25 株式会社東芝 X-ray diagnostic equipment
US10105107B2 (en) * 2015-01-08 2018-10-23 St. Jude Medical International Holding S.À R.L. Medical system having combined and synergized data output from multiple independent inputs
CN108472082B (en) * 2015-12-29 2021-08-10 皇家飞利浦有限公司 Registration system for medical navigation and method of operation thereof
US10258415B2 (en) * 2016-01-29 2019-04-16 Boston Scientific Scimed, Inc. Medical user interfaces and related methods of use
US11020563B2 (en) 2016-07-14 2021-06-01 C. R. Bard, Inc. Automated catheter-to-vessel size comparison tool and related methods
US10321913B2 (en) * 2016-08-04 2019-06-18 Biosense Webster (Israel) Ltd. Balloon positioning in a sinuplasty procedure
KR101931747B1 (en) * 2016-10-28 2019-03-13 삼성메디슨 주식회사 Biopsy apparatus and method for operating the same
US20190254759A1 (en) * 2016-11-04 2019-08-22 Intuitive Surgical Operations, Inc. Reconfigurable display in computer-assisted tele-operated surgery
JP7258483B2 (en) * 2018-07-05 2023-04-17 キヤノンメディカルシステムズ株式会社 Medical information processing system, medical information processing device and ultrasonic diagnostic device
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
CN112535499A (en) 2019-09-20 2021-03-23 巴德阿克塞斯系统股份有限公司 Automated vessel detection tool and method
JP7374289B2 (en) 2020-02-14 2023-11-06 朝日インテック株式会社 Position detection system and method for long medical devices
WO2022020351A1 (en) 2020-07-21 2022-01-27 Bard Access Systems, Inc. System, method and apparatus for magnetic tracking of ultrasound probe and generation of 3d visualization thereof
CN215839160U (en) 2020-09-03 2022-02-18 巴德阿克塞斯系统股份有限公司 Portable ultrasound probe and system
EP4213739A1 (en) 2020-09-25 2023-07-26 Bard Access Systems, Inc. Minimum catheter length tool

Citations (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203337A (en) * 1991-05-08 1993-04-20 Brigham And Women's Hospital, Inc. Coronary artery imaging system
US5357550A (en) * 1991-09-09 1994-10-18 Kabushiki Kaisha Toshiba Apparatus for diagnosing vascular systems in organism
US5391199A (en) * 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5409000A (en) * 1993-09-14 1995-04-25 Cardiac Pathways Corporation Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method
US5409007A (en) * 1993-11-26 1995-04-25 General Electric Company Filter to reduce speckle artifact in ultrasound imaging
US5432544A (en) * 1991-02-11 1995-07-11 Susana Ziarati Magnet room display of MRI and ultrasound images
US5438997A (en) * 1991-03-13 1995-08-08 Sieben; Wayne Intravascular imaging apparatus and methods for use and manufacture
US5579764A (en) * 1993-01-08 1996-12-03 Goldreyer; Bruce N. Method and apparatus for spatially specific electrophysiological sensing in a catheter with an enlarged ablating electrode
US5588432A (en) * 1988-03-21 1996-12-31 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
US5662108A (en) * 1992-09-23 1997-09-02 Endocardial Solutions, Inc. Electrophysiology mapping system
US5687737A (en) * 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
US5771895A (en) * 1996-02-12 1998-06-30 Slager; Cornelis J. Catheter for obtaining three-dimensional reconstruction of a vascular lumen and wall
US5840031A (en) * 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US6086532A (en) * 1997-09-26 2000-07-11 Ep Technologies, Inc. Systems for recording use of structures deployed in association with heart tissue
US6102863A (en) * 1998-11-20 2000-08-15 Atl Ultrasound Ultrasonic diagnostic imaging system with thin cable ultrasonic probes
US6109725A (en) * 1992-07-28 2000-08-29 Canon Kabushiki Kaisha Wiping mechanism for ink jet recording head and recording apparatus using same
US6126027A (en) * 1995-02-21 2000-10-03 Mcg Closures Limited Self-centering container closure
US6168565B1 (en) * 1999-03-31 2001-01-02 Acuson Corporation Medical diagnostic ultrasound system and method for simultaneous phase correction of two frequency band signal components
US6200269B1 (en) * 1998-05-28 2001-03-13 Diasonics, Ultrasound, Inc. Forward-scanning ultrasound catheter probe
US6246898B1 (en) * 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US6325759B1 (en) * 1999-09-23 2001-12-04 Ultrasonix Medical Corporation Ultrasound imaging system
US6389311B1 (en) * 1998-03-26 2002-05-14 Scimed Life Systems, Inc. Systems and methods using annotated images for controlling the use of diagnostic or therapeutic instruments in interior body regions
US6413219B1 (en) * 1999-03-31 2002-07-02 General Electric Company Three-dimensional ultrasound data display using multiple cut planes
US6438401B1 (en) * 2000-04-28 2002-08-20 Alpha Intervention Technology, Inc. Indentification and quantification of needle displacement departures from treatment plan
US6447450B1 (en) * 1999-11-02 2002-09-10 Ge Medical Systems Global Technology Company, Llc ECG gated ultrasonic image compounding
US6505063B2 (en) * 1999-12-15 2003-01-07 Koninklijke Philips Electronics N.V. Diagnostic imaging system with ultrasound probe
US20030045795A1 (en) * 2001-08-24 2003-03-06 Steinar Bjaerum Method and apparatus for improved spatial and temporal resolution in ultrasound imaging
US6546279B1 (en) * 2001-10-12 2003-04-08 University Of Florida Computer controlled guidance of a biopsy needle
US20030074011A1 (en) * 1998-09-24 2003-04-17 Super Dimension Ltd. System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
US20030120318A1 (en) * 1998-06-30 2003-06-26 Hauck John A. Congestive heart failure pacing optimization method and device
US20030135115A1 (en) * 1997-11-24 2003-07-17 Burdette Everette C. Method and apparatus for spatial registration and mapping of a biopsy needle during a tissue biopsy
US20030144590A1 (en) * 2002-01-29 2003-07-31 Siemens Aktiengesellschaft Medical examination and/or treatment system
US20030163045A1 (en) * 2002-02-28 2003-08-28 Koninklijke Philips Electronics N.V. Ultrasound imaging enhancement to clinical patient monitoring functions
US20030176778A1 (en) * 2002-03-15 2003-09-18 Scimed Life Systems, Inc. Medical device control systems
US6685733B1 (en) * 2002-04-10 2004-02-03 Radiant Medical, Inc. Methods and systems for reducing substance-induced renal damage
US6725562B2 (en) * 2001-06-14 2004-04-27 Matsushita Electric Works, Ltd. Hairdryer
US20040127798A1 (en) * 2002-07-22 2004-07-01 Ep Medsystems, Inc. Method and system for using ultrasound in cardiac diagnosis and therapy
US20040147842A1 (en) * 2002-12-20 2004-07-29 Desmarais Robert J. Medical imaging device with digital audio capture capability
US20040152974A1 (en) * 2001-04-06 2004-08-05 Stephen Solomon Cardiology mapping and navigation system
US20040249259A1 (en) * 2003-06-09 2004-12-09 Andreas Heimdal Methods and systems for physiologic structure and event marking
US20050033160A1 (en) * 2003-06-27 2005-02-10 Kabushiki Kaisha Toshiba Image processing/displaying apparatus and method of controlling the same
US20050080336A1 (en) * 2002-07-22 2005-04-14 Ep Medsystems, Inc. Method and apparatus for time gating of medical images
US20050090745A1 (en) * 2003-10-28 2005-04-28 Steen Erik N. Methods and systems for medical imaging
US20050096543A1 (en) * 2003-11-03 2005-05-05 Jackson John I. Motion tracking for medical imaging
US20050131474A1 (en) * 2003-12-11 2005-06-16 Ep Medsystems, Inc. Systems and methods for pacemaker programming
US20050165279A1 (en) * 2001-12-11 2005-07-28 Doron Adler Apparatus, method and system for intravascular photographic imaging
US20050171428A1 (en) * 2003-07-21 2005-08-04 Gabor Fichtinger Registration of ultrasound to fluoroscopy for real time optimization of radiation implant procedures
US20050203375A1 (en) * 1998-08-03 2005-09-15 Scimed Life Systems, Inc. System and method for passively reconstructing anatomical structure
US20050238253A1 (en) * 2002-11-29 2005-10-27 Mirada Solutions Limited British Body Corporate Image registration
US20060041180A1 (en) * 2004-06-04 2006-02-23 Viswanathan Raju R User interface for remote control of medical devices
US20060122514A1 (en) * 2004-11-23 2006-06-08 Ep Medsystems, Inc. Method and apparatus for localizing an ultrasound catheter
US20060182320A1 (en) * 2003-03-27 2006-08-17 Koninklijke Philips Electronics N.V. Guidance of invasive medical devices by wide view three dimensional ultrasonic imaging
US20060184016A1 (en) * 2005-01-18 2006-08-17 Glossop Neil D Method and apparatus for guiding an instrument to a target in the lung
US20060229594A1 (en) * 2000-01-19 2006-10-12 Medtronic, Inc. Method for guiding a medical device
US20060253032A1 (en) * 2005-04-26 2006-11-09 Altmann Andres C Display of catheter tip with beam direction for ultrasound system
US20060253031A1 (en) * 2005-04-26 2006-11-09 Altmann Andres C Registration of ultrasound data with pre-acquired image
US20060287890A1 (en) * 2005-06-15 2006-12-21 Vanderbilt University Method and apparatus for organizing and integrating structured and non-structured data across heterogeneous systems
US20070027390A1 (en) * 2005-07-13 2007-02-01 Michael Maschke System for performing and monitoring minimally invasive interventions
US7263397B2 (en) * 1998-06-30 2007-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for catheter navigation and location and mapping in the heart
US7270644B2 (en) * 2003-09-05 2007-09-18 Ossur Hf Ankle-foot orthosis having an orthotic footplate
US20080087833A1 (en) * 2005-03-07 2008-04-17 Mccroskey William K Modular multi-modal tomographic detector and system
US20080146919A1 (en) * 2006-09-29 2008-06-19 Estelle Camus Method for implanting a cardiac implant with real-time ultrasound imaging guidance
US20080177994A1 (en) * 2003-01-12 2008-07-24 Yaron Mayer System and method for improving the efficiency, comfort, and/or reliability in Operating Systems, such as for example Windows
US20080199059A1 (en) * 2004-05-14 2008-08-21 Koninklijke Philips Electronics, N.V. Information Enhanced Image Guided Interventions
US20080287902A1 (en) * 2007-05-17 2008-11-20 Playtex Products, Inc. Tampon pledget for increased by-pass leakage protection
US7485115B2 (en) * 2002-11-20 2009-02-03 Olympus Corporation Remote operation support system and method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6019725A (en) 1997-03-07 2000-02-01 Sonometrics Corporation Three-dimensional tracking and imaging system
US6490474B1 (en) 1997-08-01 2002-12-03 Cardiac Pathways Corporation System and method for electrode localization using ultrasound
US6556695B1 (en) 1999-02-05 2003-04-29 Mayo Foundation For Medical Education And Research Method for producing high resolution real-time images, of structure and function during medical procedures
WO2000057767A2 (en) 1999-03-31 2000-10-05 Ultraguide Ltd. Apparatus and methods for medical diagnostic and for medical guided interventions and therapy
US9572519B2 (en) * 1999-05-18 2017-02-21 Mediguide Ltd. Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors
US6650927B1 (en) 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
US6575901B2 (en) 2000-12-29 2003-06-10 Ge Medical Systems Information Technologies Distributed real time replication-based annotation and documentation system for cardiology procedures
JP2005500869A (en) 2001-03-28 2005-01-13 テレバイタル・インコーポレイテッド System and method for real-time monitoring, judgment, analysis, retrieval and storage of physiological data over a wide area network
AU2002348833A1 (en) 2001-11-30 2003-06-10 Koninklijke Philips Electronics N.V. Medical viewing system and method for enhancing structures in noisy images
US6679847B1 (en) 2002-04-30 2004-01-20 Koninklijke Philips Electronics N.V. Synthetically focused ultrasonic diagnostic imaging system for tissue and flow imaging
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7329225B2 (en) * 2003-02-12 2008-02-12 Duke University Methods, devices, systems and computer program products for oscillating shafts using real time 3D ultrasound
US7270634B2 (en) 2003-03-27 2007-09-18 Koninklijke Philips Electronics N.V. Guidance of invasive medical devices by high resolution three dimensional ultrasonic imaging
DE10340546B4 (en) 2003-09-01 2006-04-20 Siemens Ag Method and apparatus for visually assisting electrophysiology catheter application in the heart
DE602004024580D1 (en) 2003-12-22 2010-01-21 Koninkl Philips Electronics Nv SYSTEM FOR LEADING A MEDICAL INSTRUMENT IN THE BODY OF A PATIENT
US20060036167A1 (en) * 2004-07-03 2006-02-16 Shina Systems Ltd. Vascular image processing
US20060058660A1 (en) 2004-09-16 2006-03-16 Sandy Neal J Integrated anesthesia monitoring and ultrasound display
EP1835855B1 (en) 2005-01-11 2017-04-05 Volcano Corporation Vascular image co-registration
US8303505B2 (en) * 2005-12-02 2012-11-06 Abbott Cardiovascular Systems Inc. Methods and apparatuses for image guided medical procedures

Patent Citations (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5588432A (en) * 1988-03-21 1996-12-31 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
US5432544A (en) * 1991-02-11 1995-07-11 Susana Ziarati Magnet room display of MRI and ultrasound images
US5438997A (en) * 1991-03-13 1995-08-08 Sieben; Wayne Intravascular imaging apparatus and methods for use and manufacture
US5203337A (en) * 1991-05-08 1993-04-20 Brigham And Women's Hospital, Inc. Coronary artery imaging system
US5357550A (en) * 1991-09-09 1994-10-18 Kabushiki Kaisha Toshiba Apparatus for diagnosing vascular systems in organism
US6109725A (en) * 1992-07-28 2000-08-29 Canon Kabushiki Kaisha Wiping mechanism for ink jet recording head and recording apparatus using same
US5662108A (en) * 1992-09-23 1997-09-02 Endocardial Solutions, Inc. Electrophysiology mapping system
US5687737A (en) * 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
US5579764A (en) * 1993-01-08 1996-12-03 Goldreyer; Bruce N. Method and apparatus for spatially specific electrophysiological sensing in a catheter with an enlarged ablating electrode
US5840031A (en) * 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US5568809A (en) * 1993-07-20 1996-10-29 Biosense, Inc. Apparatus and method for intrabody mapping
US5713946A (en) * 1993-07-20 1998-02-03 Biosense, Inc. Apparatus and method for intrabody mapping
US5391199A (en) * 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5409000A (en) * 1993-09-14 1995-04-25 Cardiac Pathways Corporation Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method
US5409007A (en) * 1993-11-26 1995-04-25 General Electric Company Filter to reduce speckle artifact in ultrasound imaging
US6126027A (en) * 1995-02-21 2000-10-03 Mcg Closures Limited Self-centering container closure
US6246898B1 (en) * 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5771895A (en) * 1996-02-12 1998-06-30 Slager; Cornelis J. Catheter for obtaining three-dimensional reconstruction of a vascular lumen and wall
US6086532A (en) * 1997-09-26 2000-07-11 Ep Technologies, Inc. Systems for recording use of structures deployed in association with heart tissue
US20030135115A1 (en) * 1997-11-24 2003-07-17 Burdette Everette C. Method and apparatus for spatial registration and mapping of a biopsy needle during a tissue biopsy
US6389311B1 (en) * 1998-03-26 2002-05-14 Scimed Life Systems, Inc. Systems and methods using annotated images for controlling the use of diagnostic or therapeutic instruments in interior body regions
US6200269B1 (en) * 1998-05-28 2001-03-13 Diasonics, Ultrasound, Inc. Forward-scanning ultrasound catheter probe
US7263397B2 (en) * 1998-06-30 2007-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for catheter navigation and location and mapping in the heart
US20030120318A1 (en) * 1998-06-30 2003-06-26 Hauck John A. Congestive heart failure pacing optimization method and device
US6950689B1 (en) * 1998-08-03 2005-09-27 Boston Scientific Scimed, Inc. Dynamically alterable three-dimensional graphical model of a body region
US20050203375A1 (en) * 1998-08-03 2005-09-15 Scimed Life Systems, Inc. System and method for passively reconstructing anatomical structure
US20030074011A1 (en) * 1998-09-24 2003-04-17 Super Dimension Ltd. System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
US6102863A (en) * 1998-11-20 2000-08-15 Atl Ultrasound Ultrasonic diagnostic imaging system with thin cable ultrasonic probes
US6168565B1 (en) * 1999-03-31 2001-01-02 Acuson Corporation Medical diagnostic ultrasound system and method for simultaneous phase correction of two frequency band signal components
US6413219B1 (en) * 1999-03-31 2002-07-02 General Electric Company Three-dimensional ultrasound data display using multiple cut planes
US6325759B1 (en) * 1999-09-23 2001-12-04 Ultrasonix Medical Corporation Ultrasound imaging system
US6447450B1 (en) * 1999-11-02 2002-09-10 Ge Medical Systems Global Technology Company, Llc ECG gated ultrasonic image compounding
US6505063B2 (en) * 1999-12-15 2003-01-07 Koninklijke Philips Electronics N.V. Diagnostic imaging system with ultrasound probe
US20060229594A1 (en) * 2000-01-19 2006-10-12 Medtronic, Inc. Method for guiding a medical device
US6438401B1 (en) * 2000-04-28 2002-08-20 Alpha Intervention Technology, Inc. Indentification and quantification of needle displacement departures from treatment plan
US20040152974A1 (en) * 2001-04-06 2004-08-05 Stephen Solomon Cardiology mapping and navigation system
US6725562B2 (en) * 2001-06-14 2004-04-27 Matsushita Electric Works, Ltd. Hairdryer
US6537217B1 (en) * 2001-08-24 2003-03-25 Ge Medical Systems Global Technology Company, Llc Method and apparatus for improved spatial and temporal resolution in ultrasound imaging
US20030045795A1 (en) * 2001-08-24 2003-03-06 Steinar Bjaerum Method and apparatus for improved spatial and temporal resolution in ultrasound imaging
US6546279B1 (en) * 2001-10-12 2003-04-08 University Of Florida Computer controlled guidance of a biopsy needle
US20050165279A1 (en) * 2001-12-11 2005-07-28 Doron Adler Apparatus, method and system for intravascular photographic imaging
US20030144590A1 (en) * 2002-01-29 2003-07-31 Siemens Aktiengesellschaft Medical examination and/or treatment system
US20030163045A1 (en) * 2002-02-28 2003-08-28 Koninklijke Philips Electronics N.V. Ultrasound imaging enhancement to clinical patient monitoring functions
US20030176778A1 (en) * 2002-03-15 2003-09-18 Scimed Life Systems, Inc. Medical device control systems
US7285117B2 (en) * 2002-03-15 2007-10-23 Boston Scientific Scimed, Inc. Medical device control systems
US6685733B1 (en) * 2002-04-10 2004-02-03 Radiant Medical, Inc. Methods and systems for reducing substance-induced renal damage
US20050080336A1 (en) * 2002-07-22 2005-04-14 Ep Medsystems, Inc. Method and apparatus for time gating of medical images
US7314446B2 (en) * 2002-07-22 2008-01-01 Ep Medsystems, Inc. Method and apparatus for time gating of medical images
US20040127798A1 (en) * 2002-07-22 2004-07-01 Ep Medsystems, Inc. Method and system for using ultrasound in cardiac diagnosis and therapy
US7485115B2 (en) * 2002-11-20 2009-02-03 Olympus Corporation Remote operation support system and method
US20050238253A1 (en) * 2002-11-29 2005-10-27 Mirada Solutions Limited British Body Corporate Image registration
US20040147842A1 (en) * 2002-12-20 2004-07-29 Desmarais Robert J. Medical imaging device with digital audio capture capability
US20080177994A1 (en) * 2003-01-12 2008-07-24 Yaron Mayer System and method for improving the efficiency, comfort, and/or reliability in Operating Systems, such as for example Windows
US20060182320A1 (en) * 2003-03-27 2006-08-17 Koninklijke Philips Electronics N.V. Guidance of invasive medical devices by wide view three dimensional ultrasonic imaging
US20040249259A1 (en) * 2003-06-09 2004-12-09 Andreas Heimdal Methods and systems for physiologic structure and event marking
US20050033160A1 (en) * 2003-06-27 2005-02-10 Kabushiki Kaisha Toshiba Image processing/displaying apparatus and method of controlling the same
US20050171428A1 (en) * 2003-07-21 2005-08-04 Gabor Fichtinger Registration of ultrasound to fluoroscopy for real time optimization of radiation implant procedures
US7270644B2 (en) * 2003-09-05 2007-09-18 Ossur Hf Ankle-foot orthosis having an orthotic footplate
US20050090745A1 (en) * 2003-10-28 2005-04-28 Steen Erik N. Methods and systems for medical imaging
US20050096543A1 (en) * 2003-11-03 2005-05-05 Jackson John I. Motion tracking for medical imaging
US20050131474A1 (en) * 2003-12-11 2005-06-16 Ep Medsystems, Inc. Systems and methods for pacemaker programming
US20080199059A1 (en) * 2004-05-14 2008-08-21 Koninklijke Philips Electronics, N.V. Information Enhanced Image Guided Interventions
US20060041180A1 (en) * 2004-06-04 2006-02-23 Viswanathan Raju R User interface for remote control of medical devices
US20060122514A1 (en) * 2004-11-23 2006-06-08 Ep Medsystems, Inc. Method and apparatus for localizing an ultrasound catheter
US20060184016A1 (en) * 2005-01-18 2006-08-17 Glossop Neil D Method and apparatus for guiding an instrument to a target in the lung
US20080087833A1 (en) * 2005-03-07 2008-04-17 Mccroskey William K Modular multi-modal tomographic detector and system
US20060253031A1 (en) * 2005-04-26 2006-11-09 Altmann Andres C Registration of ultrasound data with pre-acquired image
US20060253032A1 (en) * 2005-04-26 2006-11-09 Altmann Andres C Display of catheter tip with beam direction for ultrasound system
US20060287890A1 (en) * 2005-06-15 2006-12-21 Vanderbilt University Method and apparatus for organizing and integrating structured and non-structured data across heterogeneous systems
US20070027390A1 (en) * 2005-07-13 2007-02-01 Michael Maschke System for performing and monitoring minimally invasive interventions
US20080146919A1 (en) * 2006-09-29 2008-06-19 Estelle Camus Method for implanting a cardiac implant with real-time ultrasound imaging guidance
US20080287902A1 (en) * 2007-05-17 2008-11-20 Playtex Products, Inc. Tampon pledget for increased by-pass leakage protection

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US10219780B2 (en) 2007-07-12 2019-03-05 Volcano Corporation OCT-IVUS catheter for concurrent luminal imaging
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
US9622706B2 (en) 2007-07-12 2017-04-18 Volcano Corporation Catheter for in vivo imaging
US11350906B2 (en) 2007-07-12 2022-06-07 Philips Image Guided Therapy Corporation OCT-IVUS catheter for concurrent luminal imaging
US8214021B2 (en) * 2008-12-16 2012-07-03 General Electric Company Medical imaging system and method containing ultrasound docking port
US20100152583A1 (en) * 2008-12-16 2010-06-17 General Electric Company Medical imaging system and method containing ultrasound docking port
US8909323B2 (en) * 2009-08-06 2014-12-09 Siemens Medical Solutions Usa, Inc. System for processing angiography and ultrasound image data
US20110034801A1 (en) * 2009-08-06 2011-02-10 Siemens Medical Solutions Usa, Inc. System for Processing Angiography and Ultrasound Image Data
ITGE20100076A1 (en) * 2010-07-07 2012-01-08 Esaote Spa IMAGING METHOD AND DEVICE FOR THE MONITORING OF AN EXAMINED BODY
US9271682B2 (en) 2010-07-07 2016-03-01 Esaote, S.P.A. Introduction of an object in a body under real time imaging via correlation of images obtained by different imaging apparatuses
EP2404551A1 (en) * 2010-07-07 2012-01-11 Esaote S.p.A. Method for operating an imaging device for the monitoring of an anatomical region during insertion of metallic objects and imaging device
US9724071B2 (en) 2010-09-30 2017-08-08 Koninklijke Philips N.V. Detection of bifurcations using traceable imaging device and imaging tool
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
CN103313661A (en) * 2011-01-13 2013-09-18 皇家飞利浦电子股份有限公司 Visualization of catheter in three-dimensional ultrasound
US9993304B2 (en) 2011-01-13 2018-06-12 Koninklijke Philips N.V. Visualization of catheter of three-dimensional ultrasound
US20130317356A1 (en) * 2011-01-28 2013-11-28 Koninklijke Philips N.V. Reference markers for launch point identification in optical shape sensing systems
US10820830B2 (en) * 2011-01-28 2020-11-03 Koninklijke Philips N.V. Reference markers for launch point identification in optical shape sensing systems
US10052028B2 (en) 2011-03-29 2018-08-21 Fujifilm Corporation Photoacoustic imaging method and photoacoustic imaging apparatus
US9320475B2 (en) * 2011-03-29 2016-04-26 Fujifilm Corporation Photoacoustic imaging method and photoacoustic imaging apparatus
US20140024918A1 (en) * 2011-03-29 2014-01-23 Fujifilm Corporation Photoacoustic imaging method and photoacoustic imaging apparatus
CN103717136A (en) * 2011-07-29 2014-04-09 皇家飞利浦有限公司 Accurate visualization of soft tissue motion on x-ray
JP2014521432A (en) * 2011-07-29 2014-08-28 コーニンクレッカ フィリップス エヌ ヴェ Accurate visualization of soft tissue motion with x-rays
US20140206994A1 (en) * 2011-07-29 2014-07-24 Koninklijke Philips N.V. Accurate visualization of soft tissue motion on x-ray
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
US9684972B2 (en) 2012-02-03 2017-06-20 Koninklijke Philips N.V. Imaging apparatus for imaging an object
CN104411249A (en) * 2012-05-31 2015-03-11 皇家飞利浦有限公司 Ultrasound imaging system and method for image guidance procedure
US9715757B2 (en) * 2012-05-31 2017-07-25 Koninklijke Philips N.V. Ultrasound imaging system and method for image guidance procedure
US10157489B2 (en) 2012-05-31 2018-12-18 Koninklijke Philips N.V. Ultrasound imaging system and method for image guidance procedure
US10891777B2 (en) 2012-05-31 2021-01-12 Koninklijke Philips N.V. Ultrasound imaging system and method for image guidance procedure
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US11890117B2 (en) 2012-10-05 2024-02-06 Philips Image Guided Therapy Corporation Systems for indicating parameters in an imaging data set and methods of use
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9478940B2 (en) 2012-10-05 2016-10-25 Volcano Corporation Systems and methods for amplifying light
US11864870B2 (en) 2012-10-05 2024-01-09 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US11510632B2 (en) 2012-10-05 2022-11-29 Philips Image Guided Therapy Corporation Systems for indicating parameters in an imaging data set and methods of use
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US10724082B2 (en) 2012-10-22 2020-07-28 Bio-Rad Laboratories, Inc. Methods for analyzing DNA
US11373361B2 (en) * 2012-11-06 2022-06-28 Koninklijke Philips N.V. Enhancing ultrasound images
JP2016502441A (en) * 2012-12-03 2016-01-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Integration of ultrasound and X-ray modalities
RU2676521C2 (en) * 2012-12-03 2018-12-29 Конинклейке Филипс Н.В. Integration of ultrasound and x-ray modalities
US20160270758A1 (en) * 2012-12-03 2016-09-22 Koninklijke Philips N.V. Integration of ultrasound and x-ray modalities
US11213273B2 (en) 2012-12-03 2022-01-04 Koninklijke Philips N.V. Integration of ultrasound and x-ray modalities
US10238367B2 (en) 2012-12-13 2019-03-26 Volcano Corporation Devices, systems, and methods for targeted cannulation
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US10595820B2 (en) 2012-12-20 2020-03-24 Philips Image Guided Therapy Corporation Smooth transition catheters
US11141131B2 (en) 2012-12-20 2021-10-12 Philips Image Guided Therapy Corporation Smooth transition catheters
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
US9730613B2 (en) 2012-12-20 2017-08-15 Volcano Corporation Locating intravascular images
US9709379B2 (en) 2012-12-20 2017-07-18 Volcano Corporation Optical coherence tomography system that is reconfigurable between different imaging modes
US11892289B2 (en) 2012-12-20 2024-02-06 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US10332228B2 (en) 2012-12-21 2019-06-25 Volcano Corporation System and method for graphical processing of medical data
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
US10420530B2 (en) 2012-12-21 2019-09-24 Volcano Corporation System and method for multipath processing of image signals
US10993694B2 (en) 2012-12-21 2021-05-04 Philips Image Guided Therapy Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
US10191220B2 (en) 2012-12-21 2019-01-29 Volcano Corporation Power-efficient optical circuit
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
US9383263B2 (en) 2012-12-21 2016-07-05 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US10166003B2 (en) 2012-12-21 2019-01-01 Volcano Corporation Ultrasound imaging with variable line density
US11253225B2 (en) 2012-12-21 2022-02-22 Philips Image Guided Therapy Corporation System and method for multipath processing of image signals
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US11786213B2 (en) 2012-12-21 2023-10-17 Philips Image Guided Therapy Corporation System and method for multipath processing of image signals
JP2014158695A (en) * 2013-01-22 2014-09-04 Toshiba Corp X-ray diagnostic device and ultrasound diagnostic device
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US9770172B2 (en) 2013-03-07 2017-09-26 Volcano Corporation Multimodal segmentation in intravascular images
US10638939B2 (en) 2013-03-12 2020-05-05 Philips Image Guided Therapy Corporation Systems and methods for diagnosing coronary microvascular disease
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
US10758207B2 (en) 2013-03-13 2020-09-01 Philips Image Guided Therapy Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US10426590B2 (en) 2013-03-14 2019-10-01 Volcano Corporation Filters with echogenic characteristics
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US9510805B2 (en) 2013-09-26 2016-12-06 Fujifilm Corporation Complex diagnostic apparatus, complex diagnostic system, ultrasound diagnostic apparatus, X-ray diagnostic apparatus and complex diagnostic image-generating method
US10828106B2 (en) 2015-05-12 2020-11-10 Navix International Limited Fiducial marking for image-electromagnetic field registration
US11039888B2 (en) 2015-05-12 2021-06-22 Navix International Limited Calculation of an ablation plan
US10925684B2 (en) 2015-05-12 2021-02-23 Navix International Limited Contact quality assessment by dielectric property analysis
US10881455B2 (en) 2015-05-12 2021-01-05 Navix International Limited Lesion assessment by dielectric property analysis
US10278616B2 (en) 2015-05-12 2019-05-07 Navix International Limited Systems and methods for tracking an intrabody catheter
US11350996B2 (en) 2016-07-14 2022-06-07 Navix International Limited Characteristic track catheter navigation
CN109715054A (en) * 2016-09-23 2019-05-03 皇家飞利浦有限公司 The visualization of image object relevant to the instrument in external image
US11010983B2 (en) 2016-11-16 2021-05-18 Navix International Limited Tissue model dynamic visual rendering
US11331029B2 (en) 2016-11-16 2022-05-17 Navix International Limited Esophagus position detection by electrical mapping
US11284813B2 (en) 2016-11-16 2022-03-29 Navix International Limited Real-time display of tissue deformation by interactions with an intra-body probe
US11622713B2 (en) 2016-11-16 2023-04-11 Navix International Limited Estimators for ablation effectiveness
US11631226B2 (en) 2016-11-16 2023-04-18 Navix International Limited Tissue model dynamic visual rendering
US11793571B2 (en) 2016-11-16 2023-10-24 Navix International Limited Real-time display of treatment-related tissue changes using virtual material
US10709507B2 (en) 2016-11-16 2020-07-14 Navix International Limited Real-time display of treatment-related tissue changes using virtual material
US20180235573A1 (en) * 2017-02-21 2018-08-23 General Electric Company Systems and methods for intervention guidance using a combination of ultrasound and x-ray imaging
US20180235701A1 (en) * 2017-02-21 2018-08-23 General Electric Company Systems and methods for intervention guidance using pre-operative planning with ultrasound
US11857374B2 (en) * 2017-07-26 2024-01-02 Koninklijke Philips N.V. Registration of x-ray and ultrasound images
JP7032157B2 (en) 2018-02-02 2022-03-08 キヤノンメディカルシステムズ株式会社 Medical image diagnostic device and X-ray irradiation control device
CN110123372A (en) * 2018-02-02 2019-08-16 佳能医疗系统株式会社 Medical diagnostic imaging apparatus and x-ray bombardment control device
JP2019130224A (en) * 2018-02-02 2019-08-08 キヤノンメディカルシステムズ株式会社 Medical image diagnostic apparatus and X-ray irradiation control apparatus

Also Published As

Publication number Publication date
US20150250434A1 (en) 2015-09-10
US9468413B2 (en) 2016-10-18
JP5639352B2 (en) 2014-12-10
JP2010057910A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
US9468413B2 (en) Method and apparatus for catheter guidance using a combination of ultrasound and X-ray imaging
EP2160978A1 (en) Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging
US20220358743A1 (en) System and method for positional registration of medical image data
EP1545365B1 (en) Medical device positioning system
US6317621B1 (en) Method and device for catheter navigation in three-dimensional vascular tree exposures
US8625865B2 (en) Method and apparatus for navigating a therapeutic device to a location
RU2464931C2 (en) Device for determining position of first object inside second object
EP1699361B1 (en) System for guiding a medical instrument in a patient body
US10546396B2 (en) System and method for registration of fluoroscopic images in a coordinate system of a medical system
US20090310847A1 (en) Medical image processing apparatus and x-ray diagnosis apparatus
US20140163376A1 (en) Three dimensional mapping display system for diagnostic ultrasound machines and method
EP2329786A2 (en) Guided surgery
US20070167762A1 (en) Ultrasound system for interventional treatment
US20090012390A1 (en) System and method to improve illustration of an object with respect to an imaged subject
CN101410060A (en) Determining tissue surrounding an object being inserted into a patient
US7603159B2 (en) Method for transcutaneous catheter guiding
JP2002083281A (en) Imaging device for displaying volume with high quality by real-time three-dimensional reconstruction, and method therefor
US9204854B2 (en) Medical imaging system and method
CN101621965A (en) Phase-free cardiac roadmapping
US20170000380A1 (en) Method and system for electromagnetic tracking with magnetic trackers for respiratory monitoring
EP3871603A1 (en) Methods and systems for digital mammography imaging
US8731643B2 (en) Imaging system and methods for medical needle procedures
US8467850B2 (en) System and method to determine the position of a medical instrument
US20240090948A1 (en) Method for providing a collision model and system
EP4335377A1 (en) Methods and systems for digital mammography imaging

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY,NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HALL, ANNE LINDSAY;WASHBURN, MICHAEL;ZANG, WILLIAM ALPHONSUS;REEL/FRAME:021490/0922

Effective date: 20080905

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION