US6891903B2 - Multiple transmit antenna differential detection from generalized orthogonal designs - Google Patents

Multiple transmit antenna differential detection from generalized orthogonal designs Download PDF

Info

Publication number
US6891903B2
US6891903B2 US09/844,913 US84491301A US6891903B2 US 6891903 B2 US6891903 B2 US 6891903B2 US 84491301 A US84491301 A US 84491301A US 6891903 B2 US6891903 B2 US 6891903B2
Authority
US
United States
Prior art keywords
vector
signals
block
receiving
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US09/844,913
Other versions
US20010031019A1 (en
Inventor
Hamid Jafarkhani
Vahid Tarokh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
AT&T Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/296,514 external-priority patent/US6587515B1/en
Application filed by AT&T Corp filed Critical AT&T Corp
Priority to US09/844,913 priority Critical patent/US6891903B2/en
Priority to CA002401272A priority patent/CA2401272C/en
Publication of US20010031019A1 publication Critical patent/US20010031019A1/en
Assigned to AT&T CORP. reassignment AT&T CORP. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TAROKH, VAHID, JAFARKHANI, HAMID
Application granted granted Critical
Publication of US6891903B2 publication Critical patent/US6891903B2/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas

Definitions

  • This invention relates to space-time coding and, more particularly, it relates to space-time coding and transmission in an environment that has no knowledge of the transmission channel parameters.
  • a differential detection approach allows communication without knowing the channel parameters, where the transmitter can include a plurality of transmitting antennas in excess of two.
  • Each block of bk bit is mapped to a vector and the vector is processed to develop a set of symbols for the block, by employing a set of mutually orthogonal vectors and symbols developed for the immediately previous block.
  • the set of symbols is then applied to a space-time mapping block, which develops signals that are applied to the plurality of transmitting antennas.
  • the received signals of a block are formed into vector. That vector, and a corresponding vector of the immediately previous block are processed in accordance with the mutually orthogonal vectors used by the receiver to create a combined vector.
  • the combined vector is summed with combined vectors developed for the received signals of the other receive antennas, and the summed result is applied to a minimum distance decoder module.
  • the decoder module selects a “most likely ” vector, and that vector is applied to a mapping that is the inverse of the mapping used at the input of the transmitter.
  • FIG. 1 presents a block diagram a transmitter in accord with the principles of this invention.
  • FIG. 2 presents a block diagram of a receiver in accord with the principles of this invention.
  • the following considers a multiple antenna, wireless, communication system like the one depicted in FIG. 1 , under the assumption that fading is quasi-static and flat, where a base station 10 is equipped with n transmitting antennas and a remote receiver is equipped with in receiving antennas.
  • the coefficient ⁇ i,j is the path gain from transmit antenna i to receive antenna j.
  • the path gains are modeled as samples of independent complex Gaussian random variables with variance 0.5 per real dimension.
  • the wireless channel is assumed to be quasi-static so that the path gains are constant over a frame and only vary (if at all) from one frame to another.
  • the average energy of the symbols transmitted from each antenna (c t,i ) is normalized to be 1/n, so that the average power of the received signal at each receive antenna is 1 and the signal to noise ratio is SNR.
  • a block of information bits that arrives in p time slots is converted to k symbols that are mapped via a space-time block code onto constellation points and transmitted over the n transmitting antennas over the p time slots.
  • a space-time block code is defined, therefore, by a p ⁇ n transmission matrix G (p being the number of time slots in a block, and n being the number of transmitting antennas).
  • G 84 See, for example, U.S.
  • C is basically defined using G, and the orthogonality of G columns (i.e., the attribute of equation (3)) allows the simple decoding scheme disclosed herein. Since p time slots are used to transmit k symbols, one can define the rate of the code to be k/p . For example, the rate for the illustrated G 84 is 1 ⁇ 2.
  • a vector comprising a the set of received signals of a transmitted block of signals, that are processed somewhat is related to a vector comprising the constellation symbols that were encoded with matrix G 84 (the vector s 1 s 2 s 3 s 4 ) multiplied by a matrix ( ⁇ ) that is related to the transmission medium's coefficients.
  • the thrust of this disclosure is that, at each block, the symbols that are applied to the G matrix are related to the symbols applied to the G matrix in the previous block and to the input data.
  • it is an encoding system that includes feedback around the G matrix.
  • C(S u ) is a matrix that defines what to transmit from each antenna during the transmission of the u th block.
  • R u 1 ( r 1 u r 2 u r 3 u r 4 u r 5 u *r 6 u *r 7 u *r 8 u *)
  • R u 2 ( ⁇ r 2 u r 1 u r 4 u ⁇ r 3 u ⁇ r 6 u *r 5 u *r 8 u * ⁇ r 7 u *)
  • R u 3 ( ⁇ r 3 u ⁇ r 4 u r 1 u r 2 u ⁇ r 7 u * ⁇ r 8 u *r 5 u *r 6 u *)
  • R u 4 ( ⁇ r 4 u r 3 u ⁇ r 2 u r 1 u ⁇ r 8 u *r 7 u * ⁇ r 6 u *r 5 u *),
  • R u 4 ( ⁇ r 4 u r 3 u ⁇ r 2 u r 1 u ⁇ r 8 u *r 7 u * ⁇ r 6 u *r
  • the receiver can compute the closet vector of to . Once this vector is computed, the inverse mapping of ⁇ is applied and the transmitted bits are recovered.
  • R u 1 ( r 1 u r 2 u r 3 u r 4 u r 1 u * r 2 u * r 3 u * r 4 u * )
  • R u 2 ( - r 2 u r 1 u r 4 u - r 3 u - r 2 u * r 1 u * r 4 u * - r 3 u * )
  • R u 3 ( - r 3 u - r 4 u r 1 u r 2 u - r 3 u * - r 4 u * r 1 u * r 2 u * )
  • R u 4 ( - r 4 u r 3 u - r 2 u * r 1 u * r 2 u * )
  • R u 4 ( - r 4 u r 3 u - r 2 u * -
  • a transmitter in accordance with the principles disclosed herein comprises a mapping module 12 that gathers blocks of bk bit and maps them to vectors P w . Those vectors are applied to processing element 13 that develops the vector S u+1 , with the help of vector S u , which is derived from the output of processing element 13 , delayed by one block in element 14 . The output of processing element 13 is applied to block 15 , which computes the symbol in accordance with a selected space-time mapping, such as G 84 , and applies the results to a antennas 11 - 1 through 11 - n.
  • a mapping module 12 that gathers blocks of bk bit and maps them to vectors P w . Those vectors are applied to processing element 13 that develops the vector S u+1 , with the help of vector S u , which is derived from the output of processing element 13 , delayed by one block in element 14 .
  • the output of processing element 13 is applied to block 15 , which computes the symbol in accordance with a
  • the received signals of a block are formed into vector R u , for example (e.g., in element 22 - 1 ), and with a delay element (e.g., 23 - 1 ) the signals R u+1 and R u are developed.
  • ⁇ j 1 m ⁇ R j and minimum distance decoding results in a detected P w vector.
  • the detected P w vector is applied to inverse mapping circuit 26 , which recovers bk bits for the transmitted block.

Abstract

A differential detection approach allows communication without knowing the channel parameters, where the transmitter can include a plurality of transmitting antennas in excess of two. In the transmitter, each block of bits is mapped to a vector that is processed to develop a symbols vector, by employing mutually orthogonal vectors and the symbols vector of the previous block. The symbols vector is applied to a space-time mapping block, and thence to transmitting antennas. At the receiver, the received signals of a block are formed into vector, which is combined with a corresponding vector from the previous block in accordance with the mutually orthogonal vectors. The combined vector is summed with combined vectors of the other receive antennas, and the summed result is applied to a minimum distance decoder module. The decoder module selects a “most likely ” vector, and that vector is applied to a mapping that recovers the transmitted bits.

Description

RELATED APPLICATIONS
This is a continuation-in-part application of an application that bears the Ser. No. 09/296,514, which was filed on Apr. 22, 1999 now U.S. Pat. No. 6,587,515, and which is incorporated by reference herein. This application also claims priority from Provisional Application 60/201,342, filed May 2, 2000.
BACKGROUND
This invention relates to space-time coding and, more particularly, it relates to space-time coding and transmission in an environment that has no knowledge of the transmission channel parameters.
Hocwald and Marzetta, in “Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading,” IEEE Trans. Inform. Theory, March 2000, proposed unitary space-time codes with interesting codes, but they have exponential encoding and decoding complexity. Subsequently, they came up with a second construction that has polynomial encoding but exponential decoding complexity, which makes their use formidable in practical situations. In the aforementioned Ser. No. 09/296,514 patent application, we proposed a coding scheme based on orthogonal designs, it being the first scheme that provides simple encoding/decoding algorithms. Thereafter, Hughes introduced a construction based on group codes that also has simple encoding/decoding algorithms, and Hocwald, et al. presented a construction with polynomial encoding but with a suboptimal decoding algorithm.
This disclosure is provided because the parent application discloses an arrangement where two transmitting antennas are employed and at least to some artisans questioned whether the arrangement can be expanded to more than two antennas.
SUMMARY
A differential detection approach allows communication without knowing the channel parameters, where the transmitter can include a plurality of transmitting antennas in excess of two. Each block of bk bit is mapped to a vector and the vector is processed to develop a set of symbols for the block, by employing a set of mutually orthogonal vectors and symbols developed for the immediately previous block. The set of symbols is then applied to a space-time mapping block, which develops signals that are applied to the plurality of transmitting antennas.
At the receiver, for each receive antenna the received signals of a block are formed into vector. That vector, and a corresponding vector of the immediately previous block are processed in accordance with the mutually orthogonal vectors used by the receiver to create a combined vector. The combined vector is summed with combined vectors developed for the received signals of the other receive antennas, and the summed result is applied to a minimum distance decoder module. The decoder module selects a “most likely ” vector, and that vector is applied to a mapping that is the inverse of the mapping used at the input of the transmitter.
BRIEF DESCRIPTION OF THE DRAWING
FIG. 1 presents a block diagram a transmitter in accord with the principles of this invention; and
FIG. 2 presents a block diagram of a receiver in accord with the principles of this invention.
DETAILED DESCRIPTION
The following considers a multiple antenna, wireless, communication system like the one depicted in FIG. 1, under the assumption that fading is quasi-static and flat, where a base station 10 is equipped with n transmitting antennas and a remote receiver is equipped with in receiving antennas. At each time slot t, signals ct,ii=1,2, . . . , n are transmitted simultaneously from the n transmit antennas. The coefficient αi,j is the path gain from transmit antenna i to receive antenna j. The path gains are modeled as samples of independent complex Gaussian random variables with variance 0.5 per real dimension. The wireless channel is assumed to be quasi-static so that the path gains are constant over a frame and only vary (if at all) from one frame to another.
At time t the signal rt,j, received at antenna j, is given by r t , j = i = 1 n α i , j c t , i + η t , j , ( 1 )
where ηt,j represents noise samples. The average energy of the symbols transmitted from each antenna (ct,i) is normalized to be 1/n, so that the average power of the received signal at each receive antenna is 1 and the signal to noise ratio is SNR.
When block encoding is employed, a block of information bits that arrives in p time slots is converted to k symbols that are mapped via a space-time block code onto constellation points and transmitted over the n transmitting antennas over the p time slots. The receiver receives the transmitted signals and, assuming coherent detection, computes the decision metric t = 1 p j = 1 m r t , j - i = 1 n α i , j c i , j 2 ,
over all codewords
c 1,1 c 1,2 . . . c 1,n c 2,1 c 2,2 . . . c 2,n . . . c p,1 c p,2 . . . c p,n
and decides in favor of the codeword that minimized the equation (2) is sum.
Encoding in Transmitter 10
A space-time block code is defined, therefore, by a p×n transmission matrix G (p being the number of time slots in a block, and n being the number of transmitting antennas). In the context of this disclosure, the entries of the matrix G are linear combinations of variables x1,x2, . . . xk, and their conjugates, such that the matrix G satisfies the equality
G*G=(|x 1|2 +|x 2|2 + . . . +|x k|2)I n  (3)
where In is the n×n identity matrix. For example, GS4 represents an arrangement that employs blocks of eight time slots each, utilizes four transmit antennas, and may have to form defined by: G 84 = ( x 1 x 2 x 3 x 4 - x 2 x 1 - x 4 x 3 - x 3 x 4 x 1 - x 2 - x 4 - x 3 x 2 x 1 x 1 * x 2 * x 3 * x 4 * - x 2 * x 1 * - x 4 * x 3 * - x 3 * x 4 * x 1 * - x 2 * - x 4 * - x 3 * x 2 * x 1 * ) . ( 4 )
See, for example, U.S. Pat. No. 6,088,408 issued Jul. 11, 2000; and particular, see equations (27 and (28), which demonstrate a G matrix with linear combinations. When the transmission employs a signal constellation with 2b elements, the encoding of each block begins with the collection of kb input bits, whereupon the encoder selects k constellation signals s1, . . . sk for the block. Setting xl=s1 for l=1,2, . . . , k in G, we arrive at a matrix C with entries that are linear combinations of s1, s2, . . . sk and their conjugates.
Thus, while G contains indeterminates x1, x2, . . . xk, matrix C contains specific constellation symbols (or their linear combinations), which are transmitted from n antennas as follows. If ct,i represents the element in the tth row and the ith column of C, the entries ct,i,i=1,2, . . . , n are transmitted simultaneously from transmit antennas 1,2, . . . , n at each time slot t=1,2, . . . , p. Hence, the ith column of C represents the transmitted symbols from the ith antenna and the tth row of C represents the transmitted symbols at time slot t. Note that C is basically defined using G, and the orthogonality of G columns (i.e., the attribute of equation (3)) allows the simple decoding scheme disclosed herein. Since p time slots are used to transmit k symbols, one can define the rate of the code to be k/p . For example, the rate for the illustrated G84 is ½.
Decoding in Receiver 20
Next, we consider the decoding algorithm. It can be shown that, because G is orthogonal, the decision metric in equation (2) is the sum of k components each involving only the variable xl, l=1,2, . . . , k; i.e., each independently involving one of the k transmitted symbols. It can be further shown that each component can be computed using only linear processing. See, V. Tarokh, J. Jafarkhani and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, Vol. 45, No. 5, pp. 1456-1467, July 1999. Therefore, this is a very simple decoding strategy that provides diversity.
Differential Encoding
Employing, for example, G84 and only one receive antenna, the received signal of that one antenna, rt,1, which can be noted by rt, is related to the constellation symbols s1, s2, s3, s4 by r 1 = α 1 s 1 + α 2 s 2 + α 3 s 3 + α 4 s 4 , r 2 = - α 1 s 2 + α 2 s 1 - α 3 s 4 + α 4 s 3 , r 3 = - α 1 s 3 + α 2 s 4 + α 3 s 1 - α 4 s 2 , r 4 = - α 1 s 4 - α 2 s 3 + α 3 s 2 + α 4 s 1 , r 5 = α 1 s 1 * + α 2 s 2 * + α 3 s 3 * + α 4 s 4 * , r 6 = - α 1 s 2 * + α 2 s 1 * - α 3 s 4 * + α 4 s 3 * , r 7 = - α 1 s 3 * + α 2 s 4 * + α 3 s 1 * - α 4 s 2 * , r 8 = - α 1 s 4 * - α 2 s 3 * + α 3 s 2 * + α 4 s 1 * , (ignoring noise terms), or ( 5 ) ( r 1 r 2 r 3 r 4 r 5 * r 6 * r 7 * r 8 * ) = ( s 1 s 2 s 3 s 4 ) Ω , where ( 6 ) Ω = ( α 1 α 2 α 3 α 4 α 1 * α 2 * α 3 * α 4 * α 2 - α 1 - α 4 α 3 α 2 * - α 1 * - α 4 * α 3 * α 3 α 4 - α 1 - α 2 α 3 * α 4 * - α 1 * - α 2 * α 4 - α 3 α 2 - α 1 α 4 * - α 3 * α 2 * - α 1 * ) . ( 7 )
In other words, a vector comprising a the set of received signals of a transmitted block of signals, that are processed somewhat (in this case, the last four received signals being conjugated), is related to a vector comprising the constellation symbols that were encoded with matrix G84 (the vector s1s2s3s4) multiplied by a matrix (Ω) that is related to the transmission medium's coefficients. It is noted that the equation (6) relationship is not the only one that is possible and that the following equations also hold
 (−r 2 r 1 r 4 −r 3 −r 6 *r 5 *r 8 *−r 7*)=(s 2 −s 1 s 4 −s 3)Ω,
(−r 3 −r 4 r 1 r 2 −r 7 *−r 8 *r 5 *r 6*)=(s 3 −s 4 −s 1 s 2)Ω,
(−r 4 r 3 −r 2 r 1 −r 8 *r 7 *−r 6 *r 5*)=(s 4 s 3 −s 2 −s 1)Ω.  (8)
It is also noted that if the set of constellation symbols s1, s2, s3, s4 is denoted by S, one can rewrite equation (8) as:
(r 1 r 2 r 3 r 4 r 5 *r 6 *r 7 *r 8*)=v 1(S
(−r 2 r 1 r 4 −r 3 −r 6 *r 5 *r 8 *−r 7*)=v 2(S)Ω,
(−r 3 −r 4 r 1 r 2 −r 7 *−r 8 *r 5 *r 6*)=v 3(S)Ω,
(−r 4 r 3 −r 2 r 1 −r 8 *r 7 *−r 6 *r 5*)=v 4(S)Ω.  (9)
where v1(S)=(s1 s2 s3 s4)r, v2(S)=(s2−s1 s4−s3)r, v3(S)=(s3−s4−s1 s2)r and v4(S)=(s4s3−s2−s1)r. It is noted further that the four vectors, v1, v2, v3, and v4, are orthogonal to each other. The number of such vectors is equal to the number of columns in the G matrix, which is equal to the number of transmitting antennas.
The thrust of this disclosure is that, at each block, the symbols that are applied to the G matrix are related to the symbols applied to the G matrix in the previous block and to the input data. Basically, it is an encoding system that includes feedback around the G matrix.
Assuming that we want to employ k symbols to transmit M=bk bits per block (i.e., frame), we define a set that consists of 2bk unit-length vectors P1,P2 . . . , P2 bk where each vector Pw is a k×1 vector of real numbers, Pw=(Pw1Pw2 . . . , Pwk)r. That is, the set consists of 2bk constellation points that lie on a k-dimensional unit circle, which allows any arbitrarily chosen one-to-one mapping β to be defined that maps the bk bits of a block onto . That is, an input set of kb bits maps to, or specifies, a vector Pw, where the subscript w is between 1 and 2bk, inclusively.
The encoding is done by first calculating a k-dimensional vector of symbols S=(s1s2 . . . sk)r, employing a chosen mapping. Then, indeterminates x1x2 . . . xk in G are replaced by symbols s1,s2, . . . sk, to establish the matrix C, which is used for transmission in a manner similar to a regular space-time block code. That is what the first block transmits. What remains, now, is to calculate S=(s1s2 . . . sk)r for subsequent blocks so that non-coherent detection is possible.
If Su is the vector of constellation k points that is used for the uth block of bk bits, then C(Su) is a matrix that defines what to transmit from each antenna during the transmission of the uth block. Ci(Su), i=1,2, . . . , n is the ith column of C(Su) and it contains p symbols which are transmitted from the ith antenna sequentially (in p time slots). Given an input of bk bits in block u, the vector Pw is specified by the β mapping described above, in accordance with the principles of this invention the next set of symbols S=(s1s2 . . . sk)r, for block u+1, is given by: S u + 1 = P w1 v 1 ( S u ) + P w2 v 2 ( S n ) + P w3 v 3 ( S u ) + + P wk v k ( S u ) S u + 1 = l = 1 k P w1 v l ( S u ) ( 10 )
where the Pw1 term is the ith element (dimension) of the vector Pw (that is the mapped input data).
Differential Decoding
Recalling that the received signal, rt, is related to the transmitted signals by r t = i = 1 n α i c t , i ( 11 )
(ignoring the noise), and defining
R=(r 1 r 2 . . . r k r k+1 *r k+2 * . . . r 2k*),  (12 )
which assumes p=2k—as is the case in G84—by using equation (11) one can write R in terns of the vector S which is used to define the transmitted signals, as follows
R=S rΩ(α12, . . . , αn),  (13)
(see equation (4)) or
R=S r(Λ(α12, . . . , αn)|Λ(α1*,α2*, . . . , αn*))  (14)
where the “|” designates concatenation of adjacent matrices, and Λ(α12, . . . αn) is the n×n matrix Λ = ( α 1 α 2 α 3 α 4 α 2 - α 1 - α 4 α 3 α 3 α 4 - α 1 - α 2 α 4 - α 3 α 2 - α 1 ) ( 15 )
Recalling that Su and Su+1 are used for the uth and (u+1)st blocks of bk bits, respectively. Using GS4, for each block of data we receive 8 signals. To simplify the notation, we denote the received signals corresponding to the uth block by r1 u,r2 u, . . . r8 n and the received signals corresponding to the (u+1)st block by r1 v+1,r2 v+1, . . . r8 v+1. Let us
With reference to equations (9) and (13) one can construct the vectors
R u 1=(r 1 u r 2 u r 3 u r 4 u r 5 u *r 6 u *r 7 u *r 8 u*),
R u 2=(−r 2 u r 1 u r 4 u −r 3 u −r 6 u *r 5 u *r 8 u *−r 7 u*),
R u 3=(−r 3 u −r 4 u r 1 u r 2 u −r 7 u *−r 8 u *r 5 u *r 6 u*),
R u 4=(−r 4 u r 3 u −r 2 u r 1 u −r 8 u *r 7 u *−r 6 u *r 5 u*),  (16)
where r1 u,r2 u, . . . r8 u are the signals that are received at the uth block, and also observe that Ru q=vq(Su)rΩ. It can also be shown that ΩΩ * = 2 i = 1 n α i 2 I K
and, this allows one to determine that if the product Ru+1Ru q* is to be developed, its value is: R u + 1 R u q * = S u + 1 T Ω Ω * v q ( S u ) * T = 2 i = 1 4 α i 2 S u + 1 T v q ( S u ) * T ( 17 )
Recalling that the four vectors, v1, v2, v3, and v4, are orthogonal to each other, and how is constructed in equation (10), results in R u + 1 R u q * = 2 i = 1 4 α i 2 P wq ( 18 )
where q is 1, 2, 3, or 4 in the above example. Therefore, one can construct a vector = ( R u + 1 R u 1 * R u + 1 R u 2 * R u + 1 R u 3 * R u + 1 R u 4 * ) = ( 2 ι = 1 4 α i 2 P w1 2 ι = 1 4 α i 2 P w2 2 i = 1 4 α i 2 P w3 2 i = 1 4 α i 2 P w4 ) = ( 2 ι = 1 4 α i 2 ) ( P w1 P w2 P w3 P w4 ) = ( 2 ι = 1 4 α i 2 ) P w * ( 19 )
Because the elements of (i.e., the Pw vectors) have equal length, to compute PK, the receiver can compute the closet vector of to . Once this vector is computed, the inverse mapping of β is applied and the transmitted bits are recovered.
From the resemblance of equation (19) to analogous formula for maximum ratio combining, it can be shown mathematically that the above detection method provides 4-level diversity assuming 4 transmit and one receive antennas. However, the following physical argument also demonstrates this fact. For the multiplicative coefficient i = 1 4 α i 2
in equation (19) to be small, which corresponds to a failure to receive the sent signal, all |αi|, i=1,2,3,4 have to be small. In other words, all sub-channels from the four transmit antennas to the receive antenna must undergo fading. Conversely, one can say that the decoder suffers from the detrimental effect of fading only if all of the four sub-channels have small path gains. This is equivalent to saying that a 4-level diversity has been achieved.
The same procedure can be used for more than one receive antenna. For each receive antenna j, we compute j using the method disclosed above for , assuming as if only receiver antenna j exists. Then the closest vector of to j = 1 m j
(multiplied by a normative constant) is computed. Subsequently, the transmitted bits are computed by applying the inverse mapping of β.
The above example demonstrates a situation where n=k. When the number of transmit antennas is less than the number of symbols, n<k, the same approach works; however, some of the details are different. In what follows we consider an example where three transmit antennas, with the space-time block code being: G 83 = ( x 1 x 2 x 3 - x 2 x 1 - x 4 - x 3 x 4 x 1 - x 4 - x 3 x 2 x 1 * x 2 * x 3 * - x 2 * x 1 * - x 4 * - x 3 * x 4 * x 1 * - x 4 * - x 3 * x 2 * ) . ( 20 )
When there is only one receive antenna, m=1, the received signals are related to the constellation symbols s1, s2, s3, s4 by r 1 = α 1 s 1 + α 2 s 2 + α 3 s 3 , r 2 = - α 1 s 2 + α 2 s 1 - α 3 s 4 , r 3 = - α 1 s 3 + α 2 s 4 + α 3 s 1 , r 4 = - α 1 s 4 - α 2 s 3 + α 3 s 2 , r 5 = - α 1 s 1 * + α 2 s 2 * + α 3 s 3 * , r 6 = - α 1 s 2 * + α 2 s 1 * - α 3 s 4 * , r 7 = - α 1 s 3 * + α 2 s 4 * + α 3 s 4 * , r 8 = - α 1 s 4 * - α 2 s 3 * + α 3 s 2 * . One may rearrange the above equations to arrive at ( 21 ) ( r 1 r 2 r 3 r 4 r 5 * r 6 * r 7 * r 8 * ) = ( s 1 s 2 s 3 s 4 ) Ω , where ( 22 ) Ω = ( α 1 α 2 α 3 0 α 1 * α 2 * α 3 * 0 α 2 - α 1 0 α 3 α 2 * - α 1 * 0 α 3 * α 3 0 - α 1 - α 2 α 3 * 0 - α 1 * - α 2 * 0 - α 3 α 2 - α 1 0 - α 3 * α 2 * - α 1 * ) . ( 23 )
One may simply check that Ω for G83 can be calculated from Ω for G84, equation (7), by setting α4=0. Therefore, again for each specific constellation symbols S, vectors v1(S), v2(S), v3(S), v4(S) can create a basis for the 4-dimensional space of any arbitrary 4-dimensional constellation symbols and the same encoding and decoding schemes are applicable. The only difference in the final result is that i = 1 4 α i 2
is replaced by i = 1 3 α i 2
as follows: = ( R u + 1 R u 1 * R u + 1 R u 2 * R u + 1 R u 3 * R u + 1 R u 4 * ) = ( 2 i = 1 3 α i 2 ) P w . ( 24 )
Therefore, a 3-level diversity is achieved using three transmit antennas and G83 as expected.
We have assumed rate half space-time block codes that can be applied to any complex constellation set. If the constellation set is real, rate one space-time block codes are available and the same approach works. For example, in the case of p=k=4, the following space-time block code exists for n=4: G = ( x 1 x 2 x 3 x 4 - x 2 x 1 - x 4 x 3 - x 3 x 4 x 1 - x 2 - x 4 - x 3 x 2 x 1 ) . ( 25 )
It can be shown that
(r 1 r 2 r 3 r 4 r 1 *r 2 *r 3 *r 4*)=(s 1 s 2 s 3 s 4)Ω,  (26)
where Ω is defined by equation (7). Similar differential encoding and decoding are possible if we use the following vectors for Ru 1,I=1,2,3,4 and Ru+1: R u 1 = ( r 1 u r 2 u r 3 u r 4 u r 1 u * r 2 u * r 3 u * r 4 u * ) , R u 2 = ( - r 2 u r 1 u r 4 u - r 3 u - r 2 u * r 1 u * r 4 u * - r 3 u * ) , R u 3 = ( - r 3 u - r 4 u r 1 u r 2 u - r 3 u * - r 4 u * r 1 u * r 2 u * ) , R u 4 = ( - r 4 u r 3 u - r 2 u r 1 u * - r 4 u r 3 u * - r 2 u * r 1 u * ) , ( 27 )
and
R u+1=(r 1 u+1 r 2 u+1 r 3 u+1 r 4 u+1 r 1 (u+1) *r 2 (n+1) *r 3 (u+1) *r 4 (u+1)*),  (28)
This results in a full-diversity, full-rate, scheme for differential detection.
In consonance with the above developments, a transmitter in accordance with the principles disclosed herein comprises a mapping module 12 that gathers blocks of bk bit and maps them to vectors Pw. Those vectors are applied to processing element 13 that develops the vector Su+1, with the help of vector Su, which is derived from the output of processing element 13, delayed by one block in element 14. The output of processing element 13 is applied to block 15, which computes the symbol in accordance with a selected space-time mapping, such as G84, and applies the results to a antennas 11-1 through 11-n.
At the receiver, for each receive antenna (e.g., antenna 21-1) the received signals of a block are formed into vector Ru, for example (e.g., in element 22-1), and with a delay element (e.g., 23-1) the signals Ru+1 and Ru are developed. Those signals are applied to a processor (e.g., 24-1) where the products Ru+1Ru 1*, Ru+1Ru 2*, . . . Ru+1Ru u* are computed, which form the vector 1 for processor 24-1 (and, generally, j terms are computed in the processors 24, where j=1, 2, . . . m). The different j terms are formed and summed in element 25 to form j = 1 m j
and minimum distance decoding results in a detected Pw vector. Lastly, the detected Pw vector is applied to inverse mapping circuit 26, which recovers bk bits for the transmitted block.

Claims (15)

1. A method for encoding signals to be transmitted from a plurality of transmitting antennas comprising the steps of:
mapping a block of bits, having a duration T, into a first vector;
processing said vector with a set of mutually orthogonal vectors and a delayed symbols vector to develop a current symbols vector;
delaying said current symbols vector by said duration T;
mapping said current symbols vector with a space time coder to develop a plurality of signals; and
applying said plurality of signals to said plurality of antennas.
2. The method of claim 1 where said plurality of transmitting antenna comprises more than one antenna.
3. The method of claim 1 where said plurality of transmitting antennas comprises more than two antennas.
4. The method of claim 1 where said duration T has p time slots, said mapping develops p sets of n signals, and said step of applying applies a different one of said sets on n signals during each of said p time slots.
5. The method of claim 4 where said step of processing computes, S u + 1 = l = 1 k P wl v l ( S u ) ,
where Pw is said fast vector, Pw1 is the lth element of Pw, and the sequences v1(Su), v2(Su), . . . vk(Su) belong to said set of mutually orthogonal vectors.
6. The method of claim 5 where k=4, and said mutually orthogonal vectors are v1(S)=(s1 s2 s3 s4)r, v2(S)=(s2−s1 s4−s3)r, v3(S)=(s3−s4−s1 s2)r and v4(S)=(s4s3−s2−s1)r, S being a vector that is applied to said mutually orthogonal vectors.
7. The method of claim 5 where k=3, and said mutually orthogonal vectors are any three of v1(S)=(s1 s2 s3 s4)r, v2(S)=(s2−s1 s4−s3)r, v3(S)=(s3−s4−s1 s2)r and v4(S)=(s4s3−s2−s1)r, S being a vector that is applied to said mutually orthogonal vectors.
8. The method of claim 1 where said space time coder employs a complex constellation set and develops a transmission rate of one half.
9. The method of claim 1 where said space time coder employs a real constellation set and develop a transmission rate of one.
10. A method for receiving signals that were transmitted in accordance with a claim 1, comprising the steps of:
receiving signals in blocks;
processing signals to develop a first vector, Ru, for each block u;
developing a vector having n elements Ru+1Ru q*, where Ru q corresponds to Ru processed with sequence vq(Ru), which is a qth member of a set of receiver sequences that are mutually orthogonal, for all values of q=1, 2, . . . , n, where n is a preselected number;
performing minimum distance detection on said vector to develop therefrom a vector P; and
applying a mapping to said vector P to obtain a block of bits.
11. The method of claim 10 where n equals number of antennas in said plurality of transmitting antennas.
12. The method of claim 10 where said mutually orthogonal receiver sequences are the same as the orthogonal vectors employed in said method of claim 1.
13. A method for receiving signals that were transmitted in accordance with claim 1, comprising the steps of:
receiving signals in blocks in each of an m plurality of receiving antenna;
processing signals of each receiving antenna to develop a first vector, Ru, associated with said each receiving antenna, for each block u;
developing a vector j for each receiving antenna, j, said vector having n elements Ru+1Ru q*, where Ru q corresponds to said first vector Ru processed with sequence vq(Ru), which is a qth member of a set of receiver sequences that are mutually orthogonal, for all values of q=1, 2, . . . , n, where n is a preselected number, thus developing m j vectors;
summing said m j vectors to obtain a summed vector ;
performing minimum distance detection on said vector to develop therefrom a vector P; and
applying a mapping to said vector P to obtain a block of bits.
The method of claim 10 where said m>1 where said step of receiving is receiving blocks of signals in each of a plurality of receiving antennas, and said step of developing a vector.
14. A method for receiving signals that were transmitted in accordance with claim 1 by a transmitter having more than two transmitting antennas, comprising the steps of:
receiving, through m receiving antennas, where m=1 or more, signals in blocks;
detecting signals transmitted in each block by processing received signals of said each block with aid of processed signals of immediately previous block.
15. The method of claim 14 where said step of detecting excludes consideration of parameters between said transmitting antennas and said receiving antennas.
US09/844,913 1999-04-22 2001-04-27 Multiple transmit antenna differential detection from generalized orthogonal designs Expired - Lifetime US6891903B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/844,913 US6891903B2 (en) 1999-04-22 2001-04-27 Multiple transmit antenna differential detection from generalized orthogonal designs
CA002401272A CA2401272C (en) 2000-05-02 2001-04-27 Differential detection of signals using generalized orthogonal coding designs transmitted from multiple antennas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/296,514 US6587515B1 (en) 1999-02-10 1999-04-22 Differential transmitter diversity technique for wireless communications
US20134200P 2000-05-02 2000-05-02
US09/844,913 US6891903B2 (en) 1999-04-22 2001-04-27 Multiple transmit antenna differential detection from generalized orthogonal designs

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/296,514 Continuation-In-Part US6587515B1 (en) 1999-02-10 1999-04-22 Differential transmitter diversity technique for wireless communications

Publications (2)

Publication Number Publication Date
US20010031019A1 US20010031019A1 (en) 2001-10-18
US6891903B2 true US6891903B2 (en) 2005-05-10

Family

ID=26896639

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/844,913 Expired - Lifetime US6891903B2 (en) 1999-04-22 2001-04-27 Multiple transmit antenna differential detection from generalized orthogonal designs

Country Status (1)

Country Link
US (1) US6891903B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181430A1 (en) * 2001-04-26 2002-12-05 Joseph Thomas Space-time transmit diversity scheme for time-dispersive propagation media

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8363744B2 (en) 2001-06-10 2013-01-29 Aloft Media, Llc Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
US7269224B2 (en) 2001-09-17 2007-09-11 Bae Systems Information And Electronic Systems Integration Inc. Apparatus and methods for providing efficient space-time structures for preambles, pilots and data for multi-input, multi-output communications systems
US7269127B2 (en) * 2001-10-04 2007-09-11 Bae Systems Information And Electronic Systems Integration Inc. Preamble structures for single-input, single-output (SISO) and multi-input, multi-output (MIMO) communication systems
WO2004004172A1 (en) * 2002-07-01 2004-01-08 Nokia Corporation Method and apparatus to establish constellations for imperfect channel state information at a receiver
US7889819B2 (en) * 2002-10-04 2011-02-15 Apurva Mody Methods and systems for sampling frequency offset detection, correction and control for MIMO OFDM systems
US7889804B2 (en) * 2003-05-30 2011-02-15 Mohammad Jaber Borran Partially coherent constellations for multiple-antenna systems
US7394865B2 (en) 2003-06-25 2008-07-01 Nokia Corporation Signal constellations for multi-carrier systems
US7088784B2 (en) * 2003-10-02 2006-08-08 Nokia Corporation Coded modulation for partially coherent systems
US7173973B2 (en) * 2003-10-31 2007-02-06 Nokia Corporation Multiple-antenna partially coherent constellations for multi-carrier systems
KR100981580B1 (en) * 2003-12-23 2010-09-10 삼성전자주식회사 Differential Space-Time Block Codes Transceiver Apparatus For Up To 8 Transmit Antennas
CN104145462B (en) 2012-03-02 2017-03-01 三菱电机株式会社 Wireless base station apparatus, radio receiver and data transferring method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0938194A2 (en) 1997-12-23 1999-08-25 AT&T Wireless Services, Inc. Near-optimal low-complexity decoding of space-time codes for fixed wireless applications
US6088408A (en) * 1998-11-06 2000-07-11 At & T Corp. Decoding for generalized orthogonal designs for space-time codes for wireless communication
US6185258B1 (en) * 1997-09-16 2001-02-06 At&T Wireless Services Inc. Transmitter diversity technique for wireless communications
US6327310B1 (en) * 1998-08-14 2001-12-04 Lucent Technologies Inc. Wireless transmission method for antenna arrays, having improved resistance to fading
US6363121B1 (en) * 1998-12-07 2002-03-26 Lucent Technologies Inc. Wireless transmission method for antenna arrays using unitary space-time signals
US6459740B1 (en) * 1998-09-17 2002-10-01 At&T Wireless Services, Inc. Maximum ratio transmission
US6584593B1 (en) * 1998-10-02 2003-06-24 At&T Corp. Concatenation of turbo-TCM with space-block coding
US6643338B1 (en) * 1998-10-07 2003-11-04 Texas Instruments Incorporated Space time block coded transmit antenna diversity for WCDMA
US6693982B1 (en) * 1997-10-06 2004-02-17 At&T Corp. Minimum mean squared error approach to interference cancellation and maximum likelihood decoding of space-time block codes
US6807240B2 (en) * 1997-10-31 2004-10-19 At&T Wireless Services, Inc. Low complexity maximum likelihood detection of concatenate space codes for wireless applications

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6185258B1 (en) * 1997-09-16 2001-02-06 At&T Wireless Services Inc. Transmitter diversity technique for wireless communications
US6693982B1 (en) * 1997-10-06 2004-02-17 At&T Corp. Minimum mean squared error approach to interference cancellation and maximum likelihood decoding of space-time block codes
US6807240B2 (en) * 1997-10-31 2004-10-19 At&T Wireless Services, Inc. Low complexity maximum likelihood detection of concatenate space codes for wireless applications
EP0938194A2 (en) 1997-12-23 1999-08-25 AT&T Wireless Services, Inc. Near-optimal low-complexity decoding of space-time codes for fixed wireless applications
US6741635B2 (en) * 1997-12-23 2004-05-25 At&T Wireless Services, Inc. Near-optimal low-complexity decoding of space-time codes for fixed wireless applications
US6327310B1 (en) * 1998-08-14 2001-12-04 Lucent Technologies Inc. Wireless transmission method for antenna arrays, having improved resistance to fading
US6459740B1 (en) * 1998-09-17 2002-10-01 At&T Wireless Services, Inc. Maximum ratio transmission
US6584593B1 (en) * 1998-10-02 2003-06-24 At&T Corp. Concatenation of turbo-TCM with space-block coding
US6643338B1 (en) * 1998-10-07 2003-11-04 Texas Instruments Incorporated Space time block coded transmit antenna diversity for WCDMA
US6088408A (en) * 1998-11-06 2000-07-11 At & T Corp. Decoding for generalized orthogonal designs for space-time codes for wireless communication
US6363121B1 (en) * 1998-12-07 2002-03-26 Lucent Technologies Inc. Wireless transmission method for antenna arrays using unitary space-time signals

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hochwald, B.M., et al., "Unitary Space-Time Modulation for Multiple-Antenna Communications in Rayleigh Flat Fading", IEEE Trans. on Information Theory, vol. 46, No. 2, Mar. 2000.
Wittneben, A., "Basestation Modulation Diversity for Digital SIMULCAST", IEEE, 1991, pp. 848-852.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020181430A1 (en) * 2001-04-26 2002-12-05 Joseph Thomas Space-time transmit diversity scheme for time-dispersive propagation media
US7471734B2 (en) * 2001-04-26 2008-12-30 Motorola, Inc. Space-time transmit diversity scheme for time-dispersive propagation media

Also Published As

Publication number Publication date
US20010031019A1 (en) 2001-10-18

Similar Documents

Publication Publication Date Title
US7649953B2 (en) Differential multiple-length transmit and reception diversity
US6865237B1 (en) Method and system for digital signal transmission
US6424679B1 (en) Space time block coded transmit antenna diversity for WCDMA
US7502421B2 (en) High rate transmission diversity transmission and reception
EP0960487B1 (en) Maximum likelihood detection of concatenated space-time codes for wireless applications with transmitter diversity
US6542556B1 (en) Space-time code for multiple antenna transmission
US7356090B2 (en) Transmission/reception apparatus for a wireless communication system with three transmission antennas
US7477703B2 (en) Method and radio system for digital signal transmission using complex space-time codes
US20050063483A1 (en) Differential space-time block coding
US7567623B2 (en) Differential space-time block coding apparatus with high transmission rate and method thereof
JP4966190B2 (en) Method and apparatus for transmitting a signal in a multi-antenna system, signal and method for estimating a corresponding transmission channel
US20070189369A1 (en) Open-Loop Diversity Technique for Systems Employing Multi-Transmitter Antennas
US6356605B1 (en) Frame synchronization in space time block coded transmit antenna diversity for WCDMA
US6891903B2 (en) Multiple transmit antenna differential detection from generalized orthogonal designs
US20040136465A1 (en) Data transmission/reception apparatus and method for achieving both multiplexing gain and diversity gain in a mobile communication system using space-time trellis code
US7298797B2 (en) Transmitter and receiver provided in wireless communication system using four transmitting antennas
US20030174782A1 (en) Quasi-orthogonal space-time codes
US7864876B2 (en) Differential space-time block coding apparatus using eight or less transmit antennas
US6587515B1 (en) Differential transmitter diversity technique for wireless communications
US20030081563A1 (en) Method and radio system for digital signal transmission
US7310391B2 (en) De-modulation of MOK(M-ary orthogonal modulation)
US7164729B2 (en) Differential transmitter diversity technique for wireless communications
WO2001084739A2 (en) Differential detection of signals using generalized orthogonal coding designs transmitted from multiple antennas
CA2401272C (en) Differential detection of signals using generalized orthogonal coding designs transmitted from multiple antennas
US7154970B1 (en) Differential transmitter diversity technique for wireless communications

Legal Events

Date Code Title Description
AS Assignment

Owner name: AT&T CORP., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JAFARKHANI, HAMID;TAROKH, VAHID;REEL/FRAME:012425/0485;SIGNING DATES FROM 20010427 TO 20010712

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12