US7189205B2 - System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device - Google Patents

System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device Download PDF

Info

Publication number
US7189205B2
US7189205B2 US10/445,244 US44524403A US7189205B2 US 7189205 B2 US7189205 B2 US 7189205B2 US 44524403 A US44524403 A US 44524403A US 7189205 B2 US7189205 B2 US 7189205B2
Authority
US
United States
Prior art keywords
ultrasound
patient
information
dcd
data collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US10/445,244
Other versions
US20030195424A1 (en
Inventor
Gerald J. McMorrow
William L. Barnard
Eric Haugaard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diagnostic Ultrasound Corp
Original Assignee
Diagnostic Ultrasound Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diagnostic Ultrasound Corp filed Critical Diagnostic Ultrasound Corp
Priority to US10/445,244 priority Critical patent/US7189205B2/en
Publication of US20030195424A1 publication Critical patent/US20030195424A1/en
Priority to US11/216,244 priority patent/US7331925B2/en
Priority to US11/619,881 priority patent/US20070118412A1/en
Application granted granted Critical
Publication of US7189205B2 publication Critical patent/US7189205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • A61B8/565Details of data transmission or power supply involving data transmission via a network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/08Insurance
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation

Definitions

  • This invention relates generally to medical diagnostic systems using ultrasound, and more particularly concerns application-specific medical ultrasound systems.
  • An alternative to the general purpose ultrasound machine is an application-specific ultrasound device.
  • an application-specific device instead of using a general purpose ultrasound machine, a single type of ultrasound procedure is accomplished.
  • application-specific or single purpose ultrasound machines Two examples are shown in U.S. Pat. Nos. 4,926,871 and 5,235,985, both of which are directed toward a device for measuring the amount of urine in the bladder.
  • the application-specific apparatus uses ultrasound signals and follow-on signal processing to automatically locate the bladder within the overall ultrasound volume, determine its boundaries, and then automatically compute the bladder volume, which is then provided to the trained, but not ultrasound skilled (e.g. sonographer), operator.
  • ultrasound skilled e.g. sonographer
  • bladder volume of course, can be determined using a general purpose machine, as indicated above, an application-specific machine itself produces an actual volume number. This approach not only decreases the time to produce a bladder volume determination, it is also typically more accurate, and certainly less expensive. It does not require the services of an ultrasound-skilled operator, because the machine itself automatically produces the desired bladder volume information once the ultrasound probe (transmitter/receiver) has been properly positioned.
  • Application-specific ultrasound devices significantly lower the cost of ultrasound examinations and thus can be regularly used for a single patient in order to track bladder volume information over an extended period of time. This has proved to be extremely useful in both diagnosis and treatment of bladder dysfunction.
  • application-specific ultrasound machines There are many other examples of application-specific ultrasound machines. These include machines which determine abdominal aorta size and kidney volume, among others.
  • the significant disadvantage of application-specific ultrasound machines is that they are, in fact, just that—useful for just a single application. It would be too expensive and too cumbersome for a physician, particularly a general practitioner, to maintain a large number of application-specific ultrasound machines, even though ultrasound is useful in a variety of diagnostic situations.
  • the present invention is a system for generating application-specific medical ultrasound information, comprising: an ultrasound data collection assembly which in operation produces an ultrasound scan of a selected part of the human body of a patient and to produce new, substantially unprocessed ultrasound information therefrom; a data transmission system for transmitting the unprocessed ultrasound information obtained by the assembly to a processing location physically remote from the data collection assembly location, such as to a database server on the internet, and a processor at the remote location for processing the transmitted information sufficiently to produce a medical analysis of the selected body part therefrom without the requirement of an ultrasound-skilled interpreter, wherein the medical analysis is transmitted back to a medical practitioner associated with the patient, and includes information suitable for use in the treatment of the patient by the medical practitioner.
  • the present invention also includes a system for financial tracking and billing of ultrasound procedures, comprising the steps of: performing an ultrasound diagnostic procedure on a patient and obtaining ultrasound data therefrom; transmitting the ultrasound data to a remote location for analysis; determining the status of the user's account; providing an opportunity for the user to clear the user's account in the event the user's account has been blocked for any reason; transmitting analyzed ultrasound data back to the user when the user's account is not blocked; and creating a billing for the diagnostic procedure and transmitting the billing to a selected party.
  • FIG. 1 is a diagram showing the complete system of the present invention.
  • FIG. 1A is a diagram illustrating the overall system of the present invention.
  • FIG. 2 is a diagram showing the ultrasound coverage of the transducer portion of the system of FIG. 1 .
  • FIG. 3 is a diagram showing the block diagram of the data collection device portion of FIG. 1 .
  • FIG. 4 is a flow chart showing the operation of a portion of the system of the present invention.
  • FIG. 5 is a flow chart showing steps in a business method aspect of the present invention.
  • FIG. 1 shows the overall system of the present invention.
  • the patient upon whom the ultrasound procedure is to be performed is shown generally at 10 .
  • the patient is shown in a supine position on a table 11 ; however, the patient can be in virtually any position, depending upon the particular section of the body being imaged by the ultrasound device.
  • a data collection device is shown generally at 12 .
  • DCD 12 includes a conventional ultrasound transducer (transmitter/receiver) 14 ( FIG. 3 ).
  • DCD 12 is programmed, as described below, to perform a specific ultrasound examination. In general, the operator places DCD 12 appropriately on the patient in the region which is to be imaged, and the ultrasound procedure is undertaken by the transmission and return of ultrasound signals. As an example, if the bladder is to be imaged, DCD 12 is placed on the skin area adjacent the bladder. The same procedure would be followed for other organs or areas of the body. The ultrasound information obtained by the DCD is then transmitted to a remote location where it is processed to produce a recognizable result of some kind, such as a three-dimensional model of the body part being imaged or specific numerical result.
  • DCD 12 is used in combination with an internet-connected “thin server” 17 , linked to DCD 16 by a communication link 15 .
  • thin server 17 can be an off-the-shelf personal digital system (PDA).
  • PDA personal digital system
  • Alternatives to the PDA could include a conventional PC, laptop or other internet-accessible device.
  • PDA 17 includes a conventional web browser and through the internet 16 can log onto a system ultrasound web database and server, generally indicated at 18 .
  • Web database and server 18 will, among other data, maintain a list of patients for the physician using the DCD and PDA combination.
  • the patient Prior to beginning the ultrasound procedure, the patient is first identified to the PDA. If the patient is not in the web database 18 , information about the patient will be created in the form of a record for storage in web database 18 . PDA 17 will then display a list of application-specific programs for possible use by the data collection device 12 . The selected program will then control the operation of the DCD for a specific ultrasound application.
  • the operator will select one from the list of programs available, which will then be downloaded into the data collection device 12 .
  • the communication link 15 between DCD 12 and PDA 17 can be either hard wire or wireless, such as infrared. In the event that infrared is used, DCD 12 and PDA 17 will be placed in a rack or stand 19 which will align the two devices appropriately for a line-of-sight Ir infrared transmission. The specific selected program selection is then transmitted through PDA 17 from the system database 18 through the internet.
  • DCD 12 may vary in shape, depending upon the surface of the body on which it is used, particularly whether it is to be used internally, such as vaginally, or externally, such as on the chest or abdominal area.
  • DCD 12 in the embodiment shown is battery-powered and quite rugged in construction and will be operated by a simple on-off switch or push-button.
  • the DCD includes a spherical coordinate control module for the ultrasound transducer.
  • the control module includes two stepper motors working in combination that will sweep the ultrasound transducer (and the ultrasound signals) through a three-dimensional volume.
  • DCD 12 includes a microprocessor 22 which controls the movement of the transducer 14 through a two-axis stepper motor control 26 , which is used to step the transducer through a three-dimensional volume in precise movements.
  • One motor (not shown) moves the transducer 14 through a specific angle in a given plane, referred to as the phi ( ⁇ ) dimension ( FIG. 2 ). This angle can be varied, but in the embodiment shown is 120°. Approximately 77 ultrasound signals are transmitted in the embodiment shown as the transducer is moved through the 120° angle in one phi plane. This could differ; in another embodiment, the number of ultrasound signals could be up to 120.
  • a second motor moves the transducer in the theta ( ⁇ ) direction, shown in FIG. 2 .
  • the transducer 14 is then again swept through a 120° angle phi plane. This process continues until the transducer has completed a 360° theta coverage. While in some cases it may not be necessary to complete a 360° coverage, the system of the present invention has the ability to do so. In the embodiment shown, successive scan lines are separated by 1.5°, although this can be readily varied.
  • the resulting three-dimensional ultrasound “cone” coverage is shown in FIG. 2 . It should be understood, however, that other coverage patterns can be successfully used, depending upon the ultrasound procedure to be accomplished.
  • the microprocessor 24 pulses a digital signal processor (DSP) 30 to produce the ultrasound signals, at a typical frequency of 3.7 mHz, although this could be within the range of 1–12 mHz.
  • DSP digital signal processor
  • the ultrasound signals are applied to an amplifier 32 and then to transducer 14 , which transmits ultrasound signals to the body area of interest. Return signals are directed through the receiving portion of transducer 14 into a time controlled gain (TCG) amplifier 34 .
  • TCG amplifier 34 The output from TCG amplifier 34 is applied to an analog-to-digital converter 36 , which outputs the resulting digital information on twelve output lines 38 — 38 to the digital signal processor 30 , which then directs the data into SRAM memory 44 (static random access memory).
  • An address bus 42 connects microprocessor 22 , flash memory 40 and SRAM 44 . Flash memory 40 stores the program information.
  • FIG. 1A shows a generalized system of the present invention utilizing the internet (WWW) 21 , a plurality of DCD devices 23 — 23 , which could be either single or multiple module DCDs (as explained in more detail hereinafter), a central database and server 25 and a plurality of IEDs (intelligent electronic devices), including, for example, a PC with a browser 27 , a laptop with browser 29 , or a PDA with browser 31 .
  • WWW internet
  • the central database and server 25 connected to the internet 21 has a capability of communicating with a large plurality of DCD devices positioned at various physical locations, such as at various clinics or doctor's offices, each one of which is separately maintained and accounted for by the physician-user at that location.
  • the DCD devices 23 — 23 may be either a single module device or one with multiple modules.
  • the cost of an individual DCD is small, particularly compared with a general purpose ultrasound machine, since the DCD can be fairly simple, typically without significant processing power.
  • the cost of connection to the internet for the DCD is also quite small. Hence, it is relatively easy for a physician-user to fund his/her part of the system.
  • the processing of the ultrasound image collected by the DCD occurs in the web database server 25 .
  • the processed output from database server 25 is then fed back to the practitioner through the internet 211 to the practitioner's IED, which will include conventional browser technology.
  • the ultrasound data collected by the DCDs and transmitted to the web database and server typically will be compressed, as is the information from the web database server 25 back to the individual IEDs.
  • a flow chart for downloading the data-collection software into the individual DCD devices as shown in FIG. 4 A flow chart for downloading the data-collection software into the individual DCD devices as shown in FIG. 4 .
  • the data collection software runs in the DCD during the collection of the ultrasound data. It is application-specific, i.e. it is specific to the type of ultrasound procedure being conducted.
  • the web database server maintains a list of software available for each DCD in the system and which are authorized for use by that DCD. Authorization of use of specific software is maintained by appropriate payment by the user of each DCD.
  • the present system permits every DCD instrument to be upgraded or just selected DCD instruments. Once a DCD communicates with the database server for particular software, if new software for that particular application is available, the new software will be loaded into the DCD, if the DCD listed version does not match the overall database software for that specific application.
  • FIG. 3 shows microprocessor 22 controlling a DCD with a total of four identical modules, each with its own transducer. All the modules are served by the microprocessor 22 and the SRAM/flash memory 44 , 40 .
  • the field of view being imaged is significantly increased.
  • a DCD that includes four modules ganged together in a straight line would be appropriate for imaging a narrow but elongated body structure.
  • Larger anatomies, such as the aorta or a third trimester fetus require even a larger plurality of DCD modules (perhaps a total of 10 modules in three columns) arranged to cover the desired volume.
  • the multiple module DCD increases the probability of obtaining an image that includes the portion of the body of interest, where some part or feature of the portion of interest may be hidden from view from a single module by shadow structures, such as bowel gas, stones or bone.
  • the plurality of modules in the DCD are typically operated in parallel so that the total scan time for a multiple module DCD is approximately the same as that for a single module.
  • the transducers in each module have a spatial pattern and orientation (start and stop points) of movement so that their ultrasound signals will not interfere with each other. In some cases, it may be desirable to orient the individual transducers such that one transducer is transmitting while others are receiving relative to the same target.
  • the use of multiple modules, each with a 120° scan angle (as compared to the more typical 75° scan angle), produces more accurate overall images, since the target area is being scanned from more than one position. Such an arrangement produces superior ultrasound data, without the need for a highly skilled device operator.
  • a connecting link Ir link 46 in FIG. 3
  • other communication links can be used, including various infrared links/protocols, an RF connection or other compliant interface (the “Bluetooth” interface is one example).
  • the PDA 17 is referred to as generally being a “thin” server, which could be a PDA, as indicated, a PC (with Windows software) or any other conventional internet connectable device; even a cell phone having an internet connectability would produce satisfactory results.
  • the data obtained by the DCD is then sent to the web database server 18 which is connected to the internet.
  • the link between PDA 17 and the internet 16 is by any standard internet access.
  • the database server 18 includes a number of application-specific collection programs which can be downloaded into the DCD through the internet and the PDA.
  • the web database server 18 may include diagnostic software which can itself evaluate the raw data to provide a resulting diagnosis. Further, the database software can create a three-dimensional model of the portion of the body being investigated from the ultrasound information. For instance, in the ultrasound examination of a kidney, a three-dimensional picture of an imaged kidney can be produced, along with any interior stones, which could be shown as interior solid objects. In another example, the abdominal aorta could be shown in three dimensions, along with an indication of the maximum diameter of the aorta.
  • the resulting processed information from the database server 18 is available to the physician, who has access to the database server 18 through his own PC or similar terminal unit. After review of the information, the physician can then take appropriate action, including, if necessary, instructing the patient to go to the hospital for emergency treatment.
  • the basic ultrasound data could be interpreted at the database server location by an ultrasound technician, or through a combination of processing and skilled interpretation.
  • the system includes an accelerometer 50 which can be used to detect instrument motion in three-dimensional space. This allows the system to detect and correct for motion introduced if either the operator or the patient inadvertently moves during the ultrasound procedure.
  • the accelerometer 50 can be used in monitoring a maximum threshold displacement which may occur during the ultrasound scanning of the patient. If patient movement exceeds the threshold, as determined by the accelerometer, an indication can then be provided to the operator that the scan needs to be re-done.
  • the record of motion provided by the accelerometer can be used to orient each individual scan line (the phi scan) with respect to other scan lines. This assures a locked geometry between the successive scan lines.
  • Accelerometer 50 is sensitive enough to resolve the gravity effect produced by the earth. This allows the system to obtain an indication of the patient's position during the examination. If the patient were supine, with the instrument on the patient's abdomen, the gravity vector would be straight down, normal to the direction of the ultrasound signals. However, even if the position of the patient is known, by means of external information, the earth gravity vector can still provide useful information, e.g. if the patient is supine, and the ultrasound examination is of the patient's bladder, the angle of the ultrasound probe is provided by the gravity vector. The probe angle is important information for a system which does not include the use of a trained sonographer.
  • an operator first uses the thin server (PDA 17 ) to access the ultrasound database server 18 through the internet connection. If the patient's record is not in the database, a record is created. The PDA 17 will then provide a list of software available to it from the database for application-specific examinations. The correct one is selected by the operator and the control software for that application then is downloaded into the DCD 12 . Once this is completed, the PDA screen will produce a screen image (from the ultrasound web database server 18 ) with an explanation of how to position the DCD 12 on the patient for the particular selected examination.
  • the operator then applies a standard coupling gel or gel pad article to the DCD 12 and orients the DCD on the patient, as shown on the PDA 17 , and presses the scan button on the DCD 12 .
  • the DCD 12 then transmits and collects all of the required ultrasound raw data in a short amount of time, typically two seconds or less.
  • the operator After the ultrasound data collection is completed, the operator returns DCD 12 to the equipment stand or otherwise positions it in such a way that DCD 12 can communicate via infrared with the PDA 17 , and from there to the web database server 18 .
  • the uploading of data typically takes a relatively small amount of time, typically less than 45 seconds, and during that time, the operator can locate the patient's record on the database and link the new ultrasound information with the patient's existing record.
  • Once the raw information is in database server 18 , it is processed such that it can be readily interpreted by the operator or a physician. The physician will then take appropriate action, if any action is indicated.
  • a single web database server 18 can respond to many DCDs.
  • the database server 18 will keep a list of software which is available and authorized for each DCD which is connectable to it through the internet.
  • the DCD can be a relatively simple, inexpensive, robust device for transmitting and receiving ultrasound data, while the image processing of the data is accomplished by software in the web database server 18 , which can serve a large number of similar DCD systems. This minimizes the cost for an individual ultrasound examination carried out with a DCD.
  • the ultrasound data is typically compressed prior to transmission to the web database, which speeds up the transmission and reduces the file storage requirements on the internet server.
  • the processed information can be fed back to the browser with compression as well.
  • a CCD camera subsystem 52 is used with the DCD 12 .
  • the CCD camera 52 takes a digital photograph of the patient at the time of the ultrasound procedure. This photograph can be included with the patient's raw ultrasound data in the database. The operator can also take pictures of other important information, such as the patient's insurance card or other insurance information. A video camera can also be utilized as part of the CCD system.
  • the database server 18 can also accept fingerprint or other scan information which aids in patient identification.
  • a microphone and digitizer 54 could be included to record audio information. All audio information during the ultrasound procedure could be recorded, or just selective information provided by the operator.
  • the audio recording after it is digitized, can then be readily “attached” or linked to the ultrasound data collected by the DCD and uploaded together to the web-based database server 18 .
  • the audio recording can be used at the web server, or can be used along with the processed ultrasound data by the physician-user through an internet connected device.
  • the audio information can provide information concerning the procedure or other information concerning the patient.
  • Voice-print software can also be included at the web server to analyze the recording and identify the speaker, based on voice print biographical information. This would be another way to both identify the DCD operator and/or the patient.
  • the operator will perform the ultrasound procedure and upload the raw data without necessarily identifying the patient. It is not mandatory that the operator find or create a patient record at the time of the ultrasound procedure. Further, since the ultrasound data will be stored in memory, there can be a lapse between the time of the ultrasound procedure and when the raw data is uploaded. When the raw data is uploaded, either shortly after the data is obtained or at a later time, an “exam incident” indicator can be created in database 18 , which includes the exact time and date the procedure was performed, as well as the serial number of the device used. Database 18 will eventually be able to link the DCD instrument to a specific location and a list of possible users. When convenient, the operator will access the database, where the list of “exam incidents”, connected with their facility/user name, is listed. The operator can then connect the appropriate patient to the exam.
  • the database has the capability of maintaining and collecting every ultrasound examination on every patient in the database. This provides an ability to track a patient's history over time. For instance, by maintaining a complete history of all abdominal aorta scans, the system can provide an indication on the progression and growth of an aneurysm in the aorta. The data can even be presented in the form of a computer-generated video or movie of the characteristics of the particular organ changing over time. This visual information may also be a significant incentive for the patient to follow guidelines suggested by the physician.
  • the system also provides to the clinician an ability to “blind” clinical studies early in an application product design cycle.
  • Raw data for a particular ultrasound examination can be collected in the course of normal patient flow.
  • a surgeon or other physician When a surgeon or other physician is treating a particular condition, they will take an ultrasound scan at the same time that a conventional CT or MRI examination is ordered.
  • the radiologist or other professional interprets the results of the CT or MRI in normal course.
  • An analysis of the ultrasound data is then also performed. The results can then be compared and a report generated concerning the correlation between the ultrasound results and the more conventional CT or MRI results.
  • One of the significant advantages of the present invention is the resulting relatively low cost to the physician, and to the patient, of an ultrasound examination.
  • the DCD and PDA hardware are quite inexpensive compared to a traditional ultrasound machine.
  • the charge made by a central system administrator for managing the database would also be relatively inexpensive.
  • the actual cost would depend upon the processing necessary for a particular ultrasound procedure.
  • the present system can also be used to develop appropriate billing for the patient's insurance provider, saving time and expense for the insurer.
  • FIG. 5 shows a business payment system or method involving use of the remotely based ultrasound system of the present invention.
  • the acquiring event is shown, i.e. the ultrasound data is acquired by a user (typically a physician) using a DCD.
  • the particular ID (identification) of the patient is attached to that data.
  • the data is transmitted (uploaded) to the internet and then to the database server, May 23, 2003ere it is processed as discussed above. After processing is completed, it is then determined at block 84 whether the user's account is “blocked” and thereby prevented from receiving analysis information. If “yes”, the user is provided a message to call a particular phone number or similar contact, at block 86 .
  • both the identification number of the examination and the ID of the particular electronic instrument used are sent to the customer relationship management (CRM) accounting server, as shown at block 92 .
  • CRM customer relationship management
  • the CRM server then creates a billing for that user's account in accordance with the contract between the user and the system owner (block 94 ); the CRM server either bills the user's credit card or provides a statement for payment to the user, as shown in block 96 . This is the end of the billing system relative to the user directly.
  • a third party (insurance company) is to be billed for the service, as shown at block 98 , which is a branch of the program. If not, the third party billing branch ends. If there is to be a third party billing, billing information is transmitted to the third party insurer, as shown at block 100 . A confirmation of receipt is then received from the insurer (block 102 ).
  • the overall business billing system includes coordination between the analysis and transmission of the ultrasound data and the determination of the status of the user's account. If the user's account is current, then the billing is automatically tallied and provided both to the user and/or to the insurance company, as appropriate.
  • an ultrasound system which combines relatively inexpensive data collection hardware at a physician's site with a remote processing and evaluation capability available to the physician by means of a web database server.
  • the processing can be relatively inexpensive, with the result, such as a three-dimensional model, being made available to the physician for evaluation.
  • the physician without specialized ultrasound training, can readily make accurate diagnostic determinations from the results provided.
  • a specialist in ultrasound interpretation is not necessary.
  • the system is a general purpose, application-specific structure where the system performs in operation like an application-specific device, but has the capability, depending upon the program software, of operating and processing data like a plurality of different application-specific structures, using the same hardware and software base but with different program applications obtained from a central database.

Abstract

A system which includes at least one ultrasound data collection device which is programmable to carry out a specific ultrasound procedure on a selected part of a human body of a patient. The resulting ultrasound data is transmitted via a local server at the site of the data collection device to the internet and from there to a web database server which processes the raw ultrasound data and provides application-specific information, such as a three-dimensional model, which can be used for diagnostic interpretation of the body part imaged by the ultrasound suitable for use in the treatment of the patient.

Description

PRIOR APPLICATION
This is a continuation application of U.S. patent application Ser. No. 09/620,766, filed on Jul. 21, 2000, and now U.S. Pat. No. 6,569,097, the priority of which is hereby claimed.
TECHNICAL FIELD
This invention relates generally to medical diagnostic systems using ultrasound, and more particularly concerns application-specific medical ultrasound systems.
BACKGROUND OF THE INVENTION
The majority of medical ultrasound examinations/procedures are carried out using “general purpose” ultrasound machines, which produce images of a selected portion of the human body. These images are in turn interpreted by a trained specialists in ultrasound. Radiologists, sonographers and, in some cases, specially trained physicians, usually in certain specialties, are among those who are trained to read and interpret an ultrasonic image. The cost of a general purpose ultrasound machine, however, is quite high, as is the cost of interpretation. Accordingly, an ultrasound procedure is typically quite expensive. This cost factor inherently limits the use of ultrasound, even though it is potentially a widely applicable, non-invasive diagnostic tool.
An alternative to the general purpose ultrasound machine is an application-specific ultrasound device. With an application-specific device, instead of using a general purpose ultrasound machine, a single type of ultrasound procedure is accomplished. There are many examples of application-specific or single purpose ultrasound machines. Two examples are shown in U.S. Pat. Nos. 4,926,871 and 5,235,985, both of which are directed toward a device for measuring the amount of urine in the bladder.
Instead of producing a real-time image which must be interpreted by a skilled operator, by measuring the image and then calculating the volume, the application-specific apparatus uses ultrasound signals and follow-on signal processing to automatically locate the bladder within the overall ultrasound volume, determine its boundaries, and then automatically compute the bladder volume, which is then provided to the trained, but not ultrasound skilled (e.g. sonographer), operator.
While bladder volume, of course, can be determined using a general purpose machine, as indicated above, an application-specific machine itself produces an actual volume number. This approach not only decreases the time to produce a bladder volume determination, it is also typically more accurate, and certainly less expensive. It does not require the services of an ultrasound-skilled operator, because the machine itself automatically produces the desired bladder volume information once the ultrasound probe (transmitter/receiver) has been properly positioned.
Application-specific ultrasound devices significantly lower the cost of ultrasound examinations and thus can be regularly used for a single patient in order to track bladder volume information over an extended period of time. This has proved to be extremely useful in both diagnosis and treatment of bladder dysfunction.
There are many other examples of application-specific ultrasound machines. These include machines which determine abdominal aorta size and kidney volume, among others. The significant disadvantage of application-specific ultrasound machines is that they are, in fact, just that—useful for just a single application. It would be too expensive and too cumbersome for a physician, particularly a general practitioner, to maintain a large number of application-specific ultrasound machines, even though ultrasound is useful in a variety of diagnostic situations.
Accordingly, it would be desirable to have an ultrasound system which is inexpensive, reliable and which does not require a specially trained operator and which further can be used in a variety of diagnostic situations.
SUMMARY OF THE INVENTION
Accordingly, the present invention is a system for generating application-specific medical ultrasound information, comprising: an ultrasound data collection assembly which in operation produces an ultrasound scan of a selected part of the human body of a patient and to produce new, substantially unprocessed ultrasound information therefrom; a data transmission system for transmitting the unprocessed ultrasound information obtained by the assembly to a processing location physically remote from the data collection assembly location, such as to a database server on the internet, and a processor at the remote location for processing the transmitted information sufficiently to produce a medical analysis of the selected body part therefrom without the requirement of an ultrasound-skilled interpreter, wherein the medical analysis is transmitted back to a medical practitioner associated with the patient, and includes information suitable for use in the treatment of the patient by the medical practitioner.
The present invention also includes a system for financial tracking and billing of ultrasound procedures, comprising the steps of: performing an ultrasound diagnostic procedure on a patient and obtaining ultrasound data therefrom; transmitting the ultrasound data to a remote location for analysis; determining the status of the user's account; providing an opportunity for the user to clear the user's account in the event the user's account has been blocked for any reason; transmitting analyzed ultrasound data back to the user when the user's account is not blocked; and creating a billing for the diagnostic procedure and transmitting the billing to a selected party.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram showing the complete system of the present invention.
FIG. 1A is a diagram illustrating the overall system of the present invention.
FIG. 2 is a diagram showing the ultrasound coverage of the transducer portion of the system of FIG. 1.
FIG. 3 is a diagram showing the block diagram of the data collection device portion of FIG. 1.
FIG. 4 is a flow chart showing the operation of a portion of the system of the present invention.
FIG. 5 is a flow chart showing steps in a business method aspect of the present invention.
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows the overall system of the present invention. The patient upon whom the ultrasound procedure is to be performed is shown generally at 10. In FIG. 1, the patient is shown in a supine position on a table 11; however, the patient can be in virtually any position, depending upon the particular section of the body being imaged by the ultrasound device.
A data collection device (DCD) is shown generally at 12. DCD 12 includes a conventional ultrasound transducer (transmitter/receiver) 14 (FIG. 3). DCD 12 is programmed, as described below, to perform a specific ultrasound examination. In general, the operator places DCD 12 appropriately on the patient in the region which is to be imaged, and the ultrasound procedure is undertaken by the transmission and return of ultrasound signals. As an example, if the bladder is to be imaged, DCD 12 is placed on the skin area adjacent the bladder. The same procedure would be followed for other organs or areas of the body. The ultrasound information obtained by the DCD is then transmitted to a remote location where it is processed to produce a recognizable result of some kind, such as a three-dimensional model of the body part being imaged or specific numerical result.
More specifically, referring still to FIG. 1, DCD 12 is used in combination with an internet-connected “thin server” 17, linked to DCD 16 by a communication link 15. In one example, thin server 17 can be an off-the-shelf personal digital system (PDA). Alternatives to the PDA could include a conventional PC, laptop or other internet-accessible device. PDA 17 includes a conventional web browser and through the internet 16 can log onto a system ultrasound web database and server, generally indicated at 18. Web database and server 18 will, among other data, maintain a list of patients for the physician using the DCD and PDA combination.
Prior to beginning the ultrasound procedure, the patient is first identified to the PDA. If the patient is not in the web database 18, information about the patient will be created in the form of a record for storage in web database 18. PDA 17 will then display a list of application-specific programs for possible use by the data collection device 12. The selected program will then control the operation of the DCD for a specific ultrasound application.
The operator will select one from the list of programs available, which will then be downloaded into the data collection device 12. The communication link 15 between DCD 12 and PDA 17 can be either hard wire or wireless, such as infrared. In the event that infrared is used, DCD 12 and PDA 17 will be placed in a rack or stand 19 which will align the two devices appropriately for a line-of-sight Ir infrared transmission. The specific selected program selection is then transmitted through PDA 17 from the system database 18 through the internet.
DCD 12 may vary in shape, depending upon the surface of the body on which it is used, particularly whether it is to be used internally, such as vaginally, or externally, such as on the chest or abdominal area. DCD 12 in the embodiment shown is battery-powered and quite rugged in construction and will be operated by a simple on-off switch or push-button.
The DCD includes a spherical coordinate control module for the ultrasound transducer. The control module includes two stepper motors working in combination that will sweep the ultrasound transducer (and the ultrasound signals) through a three-dimensional volume.
Referring to FIGS. 2 and 3, DCD 12 includes a microprocessor 22 which controls the movement of the transducer 14 through a two-axis stepper motor control 26, which is used to step the transducer through a three-dimensional volume in precise movements. One motor (not shown) moves the transducer 14 through a specific angle in a given plane, referred to as the phi (φ) dimension (FIG. 2). This angle can be varied, but in the embodiment shown is 120°. Approximately 77 ultrasound signals are transmitted in the embodiment shown as the transducer is moved through the 120° angle in one phi plane. This could differ; in another embodiment, the number of ultrasound signals could be up to 120.
After the ultrasound signal sweep in the one phi plane is made, a second motor (not shown) moves the transducer in the theta (θ) direction, shown in FIG. 2. The transducer 14 is then again swept through a 120° angle phi plane. This process continues until the transducer has completed a 360° theta coverage. While in some cases it may not be necessary to complete a 360° coverage, the system of the present invention has the ability to do so. In the embodiment shown, successive scan lines are separated by 1.5°, although this can be readily varied. The resulting three-dimensional ultrasound “cone” coverage is shown in FIG. 2. It should be understood, however, that other coverage patterns can be successfully used, depending upon the ultrasound procedure to be accomplished.
In generating the ultrasound signals, the microprocessor 24 pulses a digital signal processor (DSP) 30 to produce the ultrasound signals, at a typical frequency of 3.7 mHz, although this could be within the range of 1–12 mHz. The ultrasound signals are applied to an amplifier 32 and then to transducer 14, which transmits ultrasound signals to the body area of interest. Return signals are directed through the receiving portion of transducer 14 into a time controlled gain (TCG) amplifier 34. The output from TCG amplifier 34 is applied to an analog-to-digital converter 36, which outputs the resulting digital information on twelve output lines 3838 to the digital signal processor 30, which then directs the data into SRAM memory 44 (static random access memory). An address bus 42 connects microprocessor 22, flash memory 40 and SRAM 44. Flash memory 40 stores the program information.
FIG. 1A shows a generalized system of the present invention utilizing the internet (WWW) 21, a plurality of DCD devices 2323, which could be either single or multiple module DCDs (as explained in more detail hereinafter), a central database and server 25 and a plurality of IEDs (intelligent electronic devices), including, for example, a PC with a browser 27, a laptop with browser 29, or a PDA with browser 31.
In the overall system, the central database and server 25 connected to the internet 21 has a capability of communicating with a large plurality of DCD devices positioned at various physical locations, such as at various clinics or doctor's offices, each one of which is separately maintained and accounted for by the physician-user at that location. The DCD devices 2323 may be either a single module device or one with multiple modules. In the system arrangement of FIG. 1A, the cost of an individual DCD is small, particularly compared with a general purpose ultrasound machine, since the DCD can be fairly simple, typically without significant processing power.
The cost of connection to the internet for the DCD, such as through a PDA as shown in FIG. 1 or by some other arrangement, is also quite small. Hence, it is relatively easy for a physician-user to fund his/her part of the system. The processing of the ultrasound image collected by the DCD occurs in the web database server 25. The processed output from database server 25 is then fed back to the practitioner through the internet 211 to the practitioner's IED, which will include conventional browser technology. The ultrasound data collected by the DCDs and transmitted to the web database and server typically will be compressed, as is the information from the web database server 25 back to the individual IEDs.
A flow chart for downloading the data-collection software into the individual DCD devices as shown in FIG. 4. The data collection software runs in the DCD during the collection of the ultrasound data. It is application-specific, i.e. it is specific to the type of ultrasound procedure being conducted. The web database server maintains a list of software available for each DCD in the system and which are authorized for use by that DCD. Authorization of use of specific software is maintained by appropriate payment by the user of each DCD. The present system permits every DCD instrument to be upgraded or just selected DCD instruments. Once a DCD communicates with the database server for particular software, if new software for that particular application is available, the new software will be loaded into the DCD, if the DCD listed version does not match the overall database software for that specific application.
In the flow chart of FIG. 4, after the DCD is initially powered, a determination is made as to whether or not the particular requested data collection program exists at the server for that DCD. If the data collection program does exist, a determination is then made at block 62 as to whether or not a replacement data collection program is available from the server. If the answer is “yes”, or if the requested data collection program does not currently exist in the list for that DCD, the requested data collection program is downloaded from the server (block 64). If the data collection program, on the other hand, does exist in the DCD list and there is no replacement program, then ultrasound data is collected, along with voice (audio) information, typed information and/or digital picture information, if desired, as shown at block 66. The actual ultrasound information is annotated with the additional information (block 68) and then uploaded to the server (block 70) for analysis, as discussed above.
FIG. 3 shows microprocessor 22 controlling a DCD with a total of four identical modules, each with its own transducer. All the modules are served by the microprocessor 22 and the SRAM/ flash memory 44, 40. When the modules are ganged together, the field of view being imaged is significantly increased. For instance, a DCD that includes four modules ganged together in a straight line would be appropriate for imaging a narrow but elongated body structure. Larger anatomies, such as the aorta or a third trimester fetus, require even a larger plurality of DCD modules (perhaps a total of 10 modules in three columns) arranged to cover the desired volume. The multiple module DCD, with its corresponding larger field of view, increases the probability of obtaining an image that includes the portion of the body of interest, where some part or feature of the portion of interest may be hidden from view from a single module by shadow structures, such as bowel gas, stones or bone.
The plurality of modules in the DCD are typically operated in parallel so that the total scan time for a multiple module DCD is approximately the same as that for a single module. The transducers in each module have a spatial pattern and orientation (start and stop points) of movement so that their ultrasound signals will not interfere with each other. In some cases, it may be desirable to orient the individual transducers such that one transducer is transmitting while others are receiving relative to the same target. As indicated briefly above, the use of multiple modules, each with a 120° scan angle (as compared to the more typical 75° scan angle), produces more accurate overall images, since the target area is being scanned from more than one position. Such an arrangement produces superior ultrasound data, without the need for a highly skilled device operator.
The ultrasound information gathered by the DCD 12, converted to digital signals and transferred to memory, is then transmitted over a connecting link (Ir link 46 in FIG. 3) to the PDA or similar unit 17 (FIG. 1). It should be understood, however, as indicated briefly above, that other communication links can be used, including various infrared links/protocols, an RF connection or other compliant interface (the “Bluetooth” interface is one example). As indicated above, the PDA 17 is referred to as generally being a “thin” server, which could be a PDA, as indicated, a PC (with Windows software) or any other conventional internet connectable device; even a cell phone having an internet connectability would produce satisfactory results.
The data obtained by the DCD is then sent to the web database server 18 which is connected to the internet. The link between PDA 17 and the internet 16 is by any standard internet access. The database server 18, as indicated above, includes a number of application-specific collection programs which can be downloaded into the DCD through the internet and the PDA.
Once the raw ultrasound data from the DCD 12 is uploaded into database 18, it can be processed in a number of different ways. First, the web database server 18 may include diagnostic software which can itself evaluate the raw data to provide a resulting diagnosis. Further, the database software can create a three-dimensional model of the portion of the body being investigated from the ultrasound information. For instance, in the ultrasound examination of a kidney, a three-dimensional picture of an imaged kidney can be produced, along with any interior stones, which could be shown as interior solid objects. In another example, the abdominal aorta could be shown in three dimensions, along with an indication of the maximum diameter of the aorta.
The resulting processed information from the database server 18 is available to the physician, who has access to the database server 18 through his own PC or similar terminal unit. After review of the information, the physician can then take appropriate action, including, if necessary, instructing the patient to go to the hospital for emergency treatment. Alternatively, the basic ultrasound data could be interpreted at the database server location by an ultrasound technician, or through a combination of processing and skilled interpretation.
The system of the present invention also has a number of additional special features. Referring now again to FIG. 3, the system includes an accelerometer 50 which can be used to detect instrument motion in three-dimensional space. This allows the system to detect and correct for motion introduced if either the operator or the patient inadvertently moves during the ultrasound procedure. In some applications, the accelerometer 50 can be used in monitoring a maximum threshold displacement which may occur during the ultrasound scanning of the patient. If patient movement exceeds the threshold, as determined by the accelerometer, an indication can then be provided to the operator that the scan needs to be re-done. In other applications, the record of motion provided by the accelerometer can be used to orient each individual scan line (the phi scan) with respect to other scan lines. This assures a locked geometry between the successive scan lines.
Accelerometer 50 is sensitive enough to resolve the gravity effect produced by the earth. This allows the system to obtain an indication of the patient's position during the examination. If the patient were supine, with the instrument on the patient's abdomen, the gravity vector would be straight down, normal to the direction of the ultrasound signals. However, even if the position of the patient is known, by means of external information, the earth gravity vector can still provide useful information, e.g. if the patient is supine, and the ultrasound examination is of the patient's bladder, the angle of the ultrasound probe is provided by the gravity vector. The probe angle is important information for a system which does not include the use of a trained sonographer.
In the operational steps of the overall system, which includes the various portions of the system discussed above, an operator first uses the thin server (PDA 17) to access the ultrasound database server 18 through the internet connection. If the patient's record is not in the database, a record is created. The PDA 17 will then provide a list of software available to it from the database for application-specific examinations. The correct one is selected by the operator and the control software for that application then is downloaded into the DCD 12. Once this is completed, the PDA screen will produce a screen image (from the ultrasound web database server 18) with an explanation of how to position the DCD 12 on the patient for the particular selected examination.
The operator then applies a standard coupling gel or gel pad article to the DCD 12 and orients the DCD on the patient, as shown on the PDA 17, and presses the scan button on the DCD 12. The DCD 12 then transmits and collects all of the required ultrasound raw data in a short amount of time, typically two seconds or less.
After the ultrasound data collection is completed, the operator returns DCD 12 to the equipment stand or otherwise positions it in such a way that DCD 12 can communicate via infrared with the PDA 17, and from there to the web database server 18. The uploading of data typically takes a relatively small amount of time, typically less than 45 seconds, and during that time, the operator can locate the patient's record on the database and link the new ultrasound information with the patient's existing record. Once the raw information is in database server 18, it is processed such that it can be readily interpreted by the operator or a physician. The physician will then take appropriate action, if any action is indicated.
In the system of the present invention, a single web database server 18 can respond to many DCDs. The database server 18 will keep a list of software which is available and authorized for each DCD which is connectable to it through the internet. With such an arrangement, the DCD can be a relatively simple, inexpensive, robust device for transmitting and receiving ultrasound data, while the image processing of the data is accomplished by software in the web database server 18, which can serve a large number of similar DCD systems. This minimizes the cost for an individual ultrasound examination carried out with a DCD. The ultrasound data is typically compressed prior to transmission to the web database, which speeds up the transmission and reduces the file storage requirements on the internet server. The processed information can be fed back to the browser with compression as well.
In another specific additional feature, referring again to FIG. 3, a CCD camera subsystem 52 is used with the DCD 12. The CCD camera 52 takes a digital photograph of the patient at the time of the ultrasound procedure. This photograph can be included with the patient's raw ultrasound data in the database. The operator can also take pictures of other important information, such as the patient's insurance card or other insurance information. A video camera can also be utilized as part of the CCD system. The database server 18 can also accept fingerprint or other scan information which aids in patient identification.
In still another feature, again referring to FIG. 3, a microphone and digitizer 54 could be included to record audio information. All audio information during the ultrasound procedure could be recorded, or just selective information provided by the operator.
The audio recording, after it is digitized, can then be readily “attached” or linked to the ultrasound data collected by the DCD and uploaded together to the web-based database server 18. The audio recording can be used at the web server, or can be used along with the processed ultrasound data by the physician-user through an internet connected device. The audio information can provide information concerning the procedure or other information concerning the patient.
Voice-print software can also be included at the web server to analyze the recording and identify the speaker, based on voice print biographical information. This would be another way to both identify the DCD operator and/or the patient.
In some cases, the operator will perform the ultrasound procedure and upload the raw data without necessarily identifying the patient. It is not mandatory that the operator find or create a patient record at the time of the ultrasound procedure. Further, since the ultrasound data will be stored in memory, there can be a lapse between the time of the ultrasound procedure and when the raw data is uploaded. When the raw data is uploaded, either shortly after the data is obtained or at a later time, an “exam incident” indicator can be created in database 18, which includes the exact time and date the procedure was performed, as well as the serial number of the device used. Database 18 will eventually be able to link the DCD instrument to a specific location and a list of possible users. When convenient, the operator will access the database, where the list of “exam incidents”, connected with their facility/user name, is listed. The operator can then connect the appropriate patient to the exam.
The present invention has a number of applications in addition to the ability to provide ultrasound procedures quickly, efficiently and at a low cost. First, the database has the capability of maintaining and collecting every ultrasound examination on every patient in the database. This provides an ability to track a patient's history over time. For instance, by maintaining a complete history of all abdominal aorta scans, the system can provide an indication on the progression and growth of an aneurysm in the aorta. The data can even be presented in the form of a computer-generated video or movie of the characteristics of the particular organ changing over time. This visual information may also be a significant incentive for the patient to follow guidelines suggested by the physician.
The system also provides to the clinician an ability to “blind” clinical studies early in an application product design cycle. Raw data for a particular ultrasound examination can be collected in the course of normal patient flow. When a surgeon or other physician is treating a particular condition, they will take an ultrasound scan at the same time that a conventional CT or MRI examination is ordered. The radiologist or other professional interprets the results of the CT or MRI in normal course. An analysis of the ultrasound data is then also performed. The results can then be compared and a report generated concerning the correlation between the ultrasound results and the more conventional CT or MRI results.
One of the significant advantages of the present invention is the resulting relatively low cost to the physician, and to the patient, of an ultrasound examination. The DCD and PDA hardware are quite inexpensive compared to a traditional ultrasound machine. The charge made by a central system administrator for managing the database would also be relatively inexpensive. The actual cost would depend upon the processing necessary for a particular ultrasound procedure. The present system can also be used to develop appropriate billing for the patient's insurance provider, saving time and expense for the insurer.
FIG. 5 shows a business payment system or method involving use of the remotely based ultrasound system of the present invention. In block 80, the acquiring event is shown, i.e. the ultrasound data is acquired by a user (typically a physician) using a DCD. The particular ID (identification) of the patient is attached to that data. In block 82, the data is transmitted (uploaded) to the internet and then to the database server, May 23, 2003ere it is processed as discussed above. After processing is completed, it is then determined at block 84 whether the user's account is “blocked” and thereby prevented from receiving analysis information. If “yes”, the user is provided a message to call a particular phone number or similar contact, at block 86.
The user then has the opportunity to take any action to re-open the account (block 88). The user's account will be blocked typically by an unpaid balance. If the user's account is not blocked, or is reopened by action of the user, the results of the processing are made available to the user, as shown at block 90.
After the results are made available to the user, both the identification number of the examination and the ID of the particular electronic instrument used are sent to the customer relationship management (CRM) accounting server, as shown at block 92. The CRM server then creates a billing for that user's account in accordance with the contract between the user and the system owner (block 94); the CRM server either bills the user's credit card or provides a statement for payment to the user, as shown in block 96. This is the end of the billing system relative to the user directly.
There is also a determination made by the accounting server as to whether a third party (insurance company) is to be billed for the service, as shown at block 98, which is a branch of the program. If not, the third party billing branch ends. If there is to be a third party billing, billing information is transmitted to the third party insurer, as shown at block 100. A confirmation of receipt is then received from the insurer (block 102).
The overall business billing system includes coordination between the analysis and transmission of the ultrasound data and the determination of the status of the user's account. If the user's account is current, then the billing is automatically tallied and provided both to the user and/or to the insurance company, as appropriate.
Hence, an ultrasound system has been developed which combines relatively inexpensive data collection hardware at a physician's site with a remote processing and evaluation capability available to the physician by means of a web database server. The processing can be relatively inexpensive, with the result, such as a three-dimensional model, being made available to the physician for evaluation. In such an arrangement, the physician, without specialized ultrasound training, can readily make accurate diagnostic determinations from the results provided. A specialist in ultrasound interpretation is not necessary. Hence, the system is a general purpose, application-specific structure where the system performs in operation like an application-specific device, but has the capability, depending upon the program software, of operating and processing data like a plurality of different application-specific structures, using the same hardware and software base but with different program applications obtained from a central database.
Although a preferred embodiment of the invention has been disclosed here for purposes of illustration, it should be understood that various changes, modifications and substitutions may be incorporated without departing from the spirit of the invention, which is defined by the claims which follow.

Claims (5)

1. A system for generating application-specific medical ultrasound information, comprising:
a local ultrasound data collection assembly to carry out an ultrasound scan of a selected part of the human body of a patient at a given location by an operator and to produce raw, substantially unprocessed, ultrasound information therefrom;
a data transmission system for transmitting said raw, substantially unprocessed ultrasound information produced by the assembly to a processing location physically remote from the data collection assembly location, without the ultrasound information proceeding through a local processor at the site of the data collection assembly; and
a processor at the remote location for automatically processing, without human intervention, said transmitted information sufficiently to produce an application-specific medical analysis of the selected body part therefrom, wherein the medical analysis is then transmitted back to a medical practitioner associated with the patient, wherein the medical analysis includes information suitable for use in the treatment of the patent.
2. A system of claim 1, wherein the remote location is an internet database server.
3. A system of claim 2, wherein the internet database server includes means for accumulating the information from successive ultrasound examinations of a given patient, thereby maintaining a patient history for said patient available for transmission to the medical practitioner.
4. A system of claim 1, including a memory structure for storing program information for a plurality of ultrasound procedures for selective downloading to and carried out by the data collection assembly and for storing information produced from the ultrasound procedure for each patient, the system further including a data link between the memory structure and the data collection assembly.
5. A system of claim 1, wherein the medical analysis does not require an ultrasound-skilled interpreter.
US10/445,244 2000-07-21 2003-05-23 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device Expired - Fee Related US7189205B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/445,244 US7189205B2 (en) 2000-07-21 2003-05-23 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US11/216,244 US7331925B2 (en) 2000-07-21 2005-08-30 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US11/619,881 US20070118412A1 (en) 2000-07-21 2007-01-04 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/620,766 US6569097B1 (en) 2000-07-21 2000-07-21 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US10/445,244 US7189205B2 (en) 2000-07-21 2003-05-23 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/620,766 Continuation US6569097B1 (en) 2000-07-21 2000-07-21 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/216,244 Continuation-In-Part US7331925B2 (en) 2000-07-21 2005-08-30 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US11/619,881 Division US20070118412A1 (en) 2000-07-21 2007-01-04 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device

Publications (2)

Publication Number Publication Date
US20030195424A1 US20030195424A1 (en) 2003-10-16
US7189205B2 true US7189205B2 (en) 2007-03-13

Family

ID=24487303

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/620,766 Expired - Lifetime US6569097B1 (en) 2000-07-21 2000-07-21 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US10/445,244 Expired - Fee Related US7189205B2 (en) 2000-07-21 2003-05-23 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US11/619,881 Abandoned US20070118412A1 (en) 2000-07-21 2007-01-04 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/620,766 Expired - Lifetime US6569097B1 (en) 2000-07-21 2000-07-21 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/619,881 Abandoned US20070118412A1 (en) 2000-07-21 2007-01-04 System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device

Country Status (5)

Country Link
US (3) US6569097B1 (en)
EP (1) EP1367942B1 (en)
JP (1) JP2004527266A (en)
AU (1) AU2001280707A1 (en)
WO (1) WO2002007586A2 (en)

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127797A1 (en) * 2002-06-07 2004-07-01 Bill Barnard System and method for measuring bladder wall thickness and presenting a bladder virtual image
US20050114175A1 (en) * 2003-11-25 2005-05-26 O'dea Paul J. Method and apparatus for managing ultrasound examination information
US20050288584A1 (en) * 2000-07-21 2005-12-29 Diagnostic Ultrasound Corporation System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US20060025689A1 (en) * 2002-06-07 2006-02-02 Vikram Chalana System and method to measure cardiac ejection fraction
US20070004980A1 (en) * 2002-12-09 2007-01-04 Adrian Warner Distributed medical imaging system
US20070232908A1 (en) * 2002-06-07 2007-10-04 Yanwei Wang Systems and methods to improve clarity in ultrasound images
US20070276254A1 (en) * 2002-06-07 2007-11-29 Fuxing Yang System and method to identify and measure organ wall boundaries
US20080242985A1 (en) * 2003-05-20 2008-10-02 Vikram Chalana 3d ultrasound-based instrument for non-invasive measurement of amniotic fluid volume
US20080262356A1 (en) * 2002-06-07 2008-10-23 Vikram Chalana Systems and methods for ultrasound imaging using an inertial reference unit
US20090062644A1 (en) * 2002-06-07 2009-03-05 Mcmorrow Gerald System and method for ultrasound harmonic imaging
US20090112089A1 (en) * 2007-10-27 2009-04-30 Bill Barnard System and method for measuring bladder wall thickness and presenting a bladder virtual image
US20090172036A1 (en) * 2007-12-27 2009-07-02 Marx James G Systems and methods for workflow processing
US20090264757A1 (en) * 2007-05-16 2009-10-22 Fuxing Yang System and method for bladder detection using harmonic imaging
US20100006649A1 (en) * 2008-07-11 2010-01-14 Steve Bolton Secure Ballot Box
US20100036252A1 (en) * 2002-06-07 2010-02-11 Vikram Chalana Ultrasound system and method for measuring bladder wall thickness and mass
US20100036242A1 (en) * 2007-05-16 2010-02-11 Jongtae Yuk Device, system and method to measure abdominal aortic aneurysm diameter
US20100198075A1 (en) * 2002-08-09 2010-08-05 Verathon Inc. Instantaneous ultrasonic echo measurement of bladder volume with a limited number of ultrasound beams
US20100255795A1 (en) * 2007-06-18 2010-10-07 The Regents Of The University Of California Cellular Phone Enabled Medical Imaging System
US20110034209A1 (en) * 2007-06-18 2011-02-10 Boris Rubinsky Wireless technology as a data conduit in three-dimensional ultrasonogray
US8221321B2 (en) 2002-06-07 2012-07-17 Verathon Inc. Systems and methods for quantification and classification of fluids in human cavities in ultrasound images
US8801693B2 (en) 2010-10-29 2014-08-12 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US8874203B2 (en) 2003-02-21 2014-10-28 Electro-Cat, Llc Methods for measuring cross-sectional areas in luminal organs
US9232934B2 (en) 2012-12-14 2016-01-12 General Electric Company Systems and methods for communicating ultrasound probe location and image information
US9265443B2 (en) 2006-10-23 2016-02-23 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US9320918B2 (en) 2013-04-03 2016-04-26 Koninklijke Philips N.V. Modular processing of magnetic resonance data
US9339206B2 (en) 2009-06-12 2016-05-17 Bard Access Systems, Inc. Adaptor for endovascular electrocardiography
US9345422B2 (en) 2006-10-23 2016-05-24 Bard Acess Systems, Inc. Method of locating the tip of a central venous catheter
US9443633B2 (en) 2013-02-26 2016-09-13 Accuray Incorporated Electromagnetically actuated multi-leaf collimator
US9445734B2 (en) 2009-06-12 2016-09-20 Bard Access Systems, Inc. Devices and methods for endovascular electrography
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US9492097B2 (en) 2007-11-26 2016-11-15 C. R. Bard, Inc. Needle length determination and calibration for insertion guidance system
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US9526440B2 (en) 2007-11-26 2016-12-27 C.R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US9549685B2 (en) 2007-11-26 2017-01-24 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US9554716B2 (en) 2007-11-26 2017-01-31 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9681823B2 (en) 2007-11-26 2017-06-20 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US9839372B2 (en) 2014-02-06 2017-12-12 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US9907513B2 (en) 2008-10-07 2018-03-06 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US10004875B2 (en) 2005-08-24 2018-06-26 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US10046139B2 (en) 2010-08-20 2018-08-14 C. R. Bard, Inc. Reconfirmation of ECG-assisted catheter tip placement
US10159531B2 (en) 2012-04-05 2018-12-25 C. R. Bard, Inc. Apparatus and methods relating to intravascular positioning of distal end of catheter
US10172538B2 (en) 2003-02-21 2019-01-08 3Dt Holdings, Llc Body lumen junction localization
US10220172B2 (en) 2015-11-25 2019-03-05 Resmed Limited Methods and systems for providing interface components for respiratory therapy
US10231643B2 (en) 2009-06-12 2019-03-19 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US10413211B2 (en) 2003-02-21 2019-09-17 3Dt Holdings, Llc Systems, devices, and methods for mapping organ profiles
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US10524685B2 (en) 2003-02-21 2020-01-07 3Dt Holdings, Llc Methods for generating luminal organ profiles using impedance
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US11000205B2 (en) 2012-04-05 2021-05-11 Bard Access Systems, Inc. Devices and systems for navigation and positioning a central venous catheter within a patient
US11504097B2 (en) 2017-09-01 2022-11-22 Clarius Mobile Health Corp. Systems and methods for acquiring raw ultrasound data from an ultrasound machine using a wirelessly connected device
US11759268B2 (en) 2012-04-05 2023-09-19 C. R. Bard, Inc. Apparatus and methods relating to intravascular positioning of distal end of catheter

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040015079A1 (en) 1999-06-22 2004-01-22 Teratech Corporation Ultrasound probe with integrated electronics
US9402601B1 (en) * 1999-06-22 2016-08-02 Teratech Corporation Methods for controlling an ultrasound imaging procedure and providing ultrasound images to an external non-ultrasound application via a network
US6569097B1 (en) * 2000-07-21 2003-05-27 Diagnostics Ultrasound Corporation System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
KR20020017297A (en) * 2000-08-29 2002-03-07 이영수 Medical moving-image service system and method thereof
JP3655824B2 (en) * 2000-12-07 2005-06-02 日本電気株式会社 Portable information terminal device and display method thereof
US7115093B2 (en) * 2001-11-21 2006-10-03 Ge Medical Systems Global Technology Company, Llc Method and system for PDA-based ultrasound system
JP2003265468A (en) * 2002-03-19 2003-09-24 Ge Medical Systems Global Technology Co Llc Diagnosis information generating device and ultrasonograph
US7534211B2 (en) * 2002-03-29 2009-05-19 Sonosite, Inc. Modular apparatus for diagnostic ultrasound
US7450746B2 (en) 2002-06-07 2008-11-11 Verathon Inc. System and method for cardiac imaging
WO2006026605A2 (en) 2002-06-07 2006-03-09 Diagnostic Ultrasound Corporation Systems and methods for quantification and classification of fluids in human cavities in ultrasound images
US6905468B2 (en) * 2002-09-18 2005-06-14 Diagnostic Ultrasound Corporation Three-dimensional system for abdominal aortic aneurysm evaluation
US6716171B1 (en) * 2002-09-30 2004-04-06 Koninklijke Philips Electronics N.V. System and method for interfacing an ultrasound transducer with a computing device performing beamforming processing
US20040138923A1 (en) * 2002-12-09 2004-07-15 Helen Routh Distributed medical imaging system and method
US20040139190A1 (en) * 2003-01-15 2004-07-15 Kreger Kevin Scott A private http based system for diagnosis, control and monitoring of an imaging system controller
US7591786B2 (en) * 2003-01-31 2009-09-22 Sonosite, Inc. Dock for connecting peripheral devices to a modular diagnostic ultrasound apparatus
US20050010098A1 (en) * 2003-04-11 2005-01-13 Sigmund Frigstad Method and apparatus for knowledge based diagnostic imaging
US7399278B1 (en) 2003-05-05 2008-07-15 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Method and system for measuring amniotic fluid volume and/or assessing fetal weight
US7549961B1 (en) * 2003-07-31 2009-06-23 Sonosite, Inc. System and method supporting imaging and monitoring applications
US20050049495A1 (en) * 2003-09-03 2005-03-03 Siemens Medical Solutions Usa, Inc. Remote assistance for medical diagnostic ultrasound
US20050149363A1 (en) * 2004-01-07 2005-07-07 Jonathan Loiterman Data collection and process control system
WO2005074808A1 (en) * 2004-02-03 2005-08-18 Matsushita Electric Industrial Co., Ltd. Remote ultrasonographic examinee side device, remote ultrasonographic examiner side device, and remote ultrasonographic system
KR20050093019A (en) * 2004-03-18 2005-09-23 주식회사 메디슨 System and method for providing ultrasound image of an embryo through wireless network
US7367945B2 (en) 2004-03-29 2008-05-06 General Electric Company Ultrasound system
US8199685B2 (en) * 2004-05-17 2012-06-12 Sonosite, Inc. Processing of medical signals
AU2006204523A1 (en) * 2005-01-04 2006-07-13 Novartis Ag X-ray structure of human FPPS and use for selecting FPPS binding compounds
CA2616313A1 (en) * 2005-07-22 2007-02-01 Tomotherapy Incorporated System and method of recommending a location for radiation therapy treatment
US20070083099A1 (en) * 2005-09-29 2007-04-12 Henderson Stephen W Path related three dimensional medical imaging
US8764664B2 (en) 2005-11-28 2014-07-01 Vizyontech Imaging, Inc. Methods and apparatus for conformable medical data acquisition pad and configurable imaging system
KR100779548B1 (en) * 2006-04-25 2007-11-27 (주) 엠큐브테크놀로지 Ultrasonic diagnosis apparatus for a urinary bladder and the method thereof
CA2657691A1 (en) 2006-06-19 2007-12-27 Vanderbilt University Methods and compositions for diagnostic and therapeutic targeting of cox-2
KR100839961B1 (en) * 2006-08-31 2008-06-19 광주과학기술원 Measuring Sensor for Urinary Bladder Volume, and Urinary Bladder Management System Using Device, and Method Therefor
US8073211B2 (en) 2007-02-23 2011-12-06 General Electric Company Method and apparatus for generating variable resolution medical images
US9561015B2 (en) * 2007-08-24 2017-02-07 General Electric Company Method and apparatus for voice recording with ultrasound imaging
EP2413802A1 (en) 2009-04-01 2012-02-08 Analogic Corporation Ultrasound probe
KR101562204B1 (en) * 2012-01-17 2015-10-21 삼성전자주식회사 Probe device, server, ultrasound image diagnosis system, and ultrasound image processing method
CN102895001B (en) * 2012-09-21 2014-07-23 飞依诺科技(苏州)有限公司 Ultrasonic color blood flow imaging dynamic range compression processing method and system
US9675322B2 (en) 2013-04-26 2017-06-13 University Of South Carolina Enhanced ultrasound device and methods of using same
US10186171B2 (en) 2013-09-26 2019-01-22 University Of South Carolina Adding sounds to simulated ultrasound examinations
CN109223030B (en) * 2017-07-11 2022-02-18 中慧医学成像有限公司 Handheld three-dimensional ultrasonic imaging system and method
DE102017126158A1 (en) * 2017-11-08 2019-05-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. An ultrasound imaging system
JP7293737B2 (en) * 2019-03-08 2023-06-20 コニカミノルタ株式会社 Ultrasound probe, terminal device, ultrasound diagnostic device and ultrasound diagnostic system
US11364008B2 (en) 2019-09-30 2022-06-21 Turner Imaging Systems, Inc. Image compression for x-ray imaging devices
JP7093093B2 (en) * 2020-01-08 2022-06-29 有限会社フロントエンドテクノロジー Ultrasonic urine volume measuring device, learning model generation method, learning model
US11553887B2 (en) * 2020-03-05 2023-01-17 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Limited data persistence in a medical imaging workflow
US20220211346A1 (en) * 2021-01-04 2022-07-07 Bfly Operations, Inc. Methods and apparatuses for displaying ultrasound displays on a foldable processing device

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291401A (en) * 1991-11-15 1994-03-01 Telescan, Limited Teleradiology system
US5295485A (en) * 1991-12-13 1994-03-22 Hitachi, Ltd. Ultrasonic diagnostic system
US5715823A (en) * 1996-02-27 1998-02-10 Atlantis Diagnostics International, L.L.C. Ultrasonic diagnostic imaging system with universal access to diagnostic information and images
US5806521A (en) * 1996-03-26 1998-09-15 Sandia Corporation Composite ultrasound imaging apparatus and method
US6120447A (en) * 1998-12-31 2000-09-19 General Electric Company Ultrasound image data wireless transmission techniques
US6159150A (en) * 1998-11-20 2000-12-12 Acuson Corporation Medical diagnostic ultrasonic imaging system with auxiliary processor
US6210327B1 (en) * 1999-04-28 2001-04-03 General Electric Company Method and apparatus for sending ultrasound image data to remotely located device
US6230043B1 (en) * 1998-09-30 2001-05-08 General Electric Company Method and apparatus for capturing and automatically transferring an x-ray image to a remote location
US6263094B1 (en) * 1999-04-02 2001-07-17 Agilent Technologies, Inc. Acoustic data acquisition/playback system and method
US6289115B1 (en) * 1998-02-20 2001-09-11 Fuji Photo Film Co., Ltd. Medical network system
US6351547B1 (en) * 1999-04-28 2002-02-26 General Electric Company Method and apparatus for formatting digital images to conform to communications standard
US20030083563A1 (en) * 2001-10-25 2003-05-01 Igor Katsman Medical imaging data streaming
US6569097B1 (en) * 2000-07-21 2003-05-27 Diagnostics Ultrasound Corporation System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US20040030585A1 (en) * 2000-10-25 2004-02-12 Aviram Sariel Method and system for remote image reconstitution and processing and imaging data collectors communicating with the system
US6725087B1 (en) * 2000-09-19 2004-04-20 Telectroscan, Inc. Method and apparatus for remote imaging of biological tissue by electrical impedance tomography through a communications network
US6783493B2 (en) * 1999-06-22 2004-08-31 Teratech Corporation Ultrasound probe with integrated electronics
US6829378B2 (en) * 2001-05-04 2004-12-07 Biomec, Inc. Remote medical image analysis
US6963673B1 (en) * 1999-12-28 2005-11-08 General Electric Company Imaging system adapted to partially preprocess image data

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5005126A (en) * 1987-04-09 1991-04-02 Prevail, Inc. System and method for remote presentation of diagnostic image information
US5159931A (en) * 1988-11-25 1992-11-03 Riccardo Pini Apparatus for obtaining a three-dimensional reconstruction of anatomic structures through the acquisition of echographic images
US5851186A (en) * 1996-02-27 1998-12-22 Atl Ultrasound, Inc. Ultrasonic diagnostic imaging system with universal access to diagnostic information and images
AU1983397A (en) * 1996-02-29 1997-09-16 Acuson Corporation Multiple ultrasound image registration system, method and transducer
US6006191A (en) * 1996-05-13 1999-12-21 Dirienzo; Andrew L. Remote access medical image exchange system and methods of operation therefor
US5897498A (en) * 1996-09-25 1999-04-27 Atl Ultrasound, Inc. Ultrasonic diagnostic imaging system with electronic message communications capability
WO1998016893A1 (en) * 1996-10-15 1998-04-23 Cymedix Corp. Automated networked service request and fulfillment system and method
US6018713A (en) * 1997-04-09 2000-01-25 Coli; Robert D. Integrated system and method for ordering and cumulative results reporting of medical tests
CA2222740A1 (en) * 1997-11-28 1999-05-28 Dicomit Imaging Systems Corp. An ultrasound image management system
US5971923A (en) * 1997-12-31 1999-10-26 Acuson Corporation Ultrasound system and method for interfacing with peripherals
WO1999066841A1 (en) * 1998-06-24 1999-12-29 Ecton, Inc. Ultrasonic imaging systems and methods
US5993390A (en) * 1998-09-18 1999-11-30 Hewlett- Packard Company Segmented 3-D cardiac ultrasound imaging method and apparatus
US6126598A (en) * 1998-10-01 2000-10-03 Atl Ultrasound, Inc. Ultrasonic diagnostic imaging system with adaptive spatial compounding
US6149585A (en) * 1998-10-28 2000-11-21 Sage Health Management Solutions, Inc. Diagnostic enhancement method and apparatus
US6042545A (en) * 1998-11-25 2000-03-28 Acuson Corporation Medical diagnostic ultrasound system and method for transform ultrasound processing
US6272469B1 (en) * 1998-11-25 2001-08-07 Ge Medical Systems Global Technology Company, Llc Imaging system protocol handling method and apparatus
US6440071B1 (en) * 1999-10-18 2002-08-27 Guided Therapy Systems, Inc. Peripheral ultrasound imaging system
US6574742B1 (en) * 1999-11-12 2003-06-03 Insite One, Llc Method for storing and accessing digital medical images
US7464040B2 (en) * 1999-12-18 2008-12-09 Raymond Anthony Joao Apparatus and method for processing and/or for providing healthcare information and/or healthcare-related information
US20010051881A1 (en) * 1999-12-22 2001-12-13 Aaron G. Filler System, method and article of manufacture for managing a medical services network
US6350239B1 (en) * 1999-12-28 2002-02-26 Ge Medical Systems Global Technology Company, Llc Method and apparatus for distributed software architecture for medical diagnostic systems
US6238344B1 (en) * 2000-03-30 2001-05-29 Acuson Corporation Medical diagnostic ultrasound imaging system with a wirelessly-controlled peripheral
US6440072B1 (en) * 2000-03-30 2002-08-27 Acuson Corporation Medical diagnostic ultrasound imaging system and method for transferring ultrasound examination data to a portable computing device
US20020016545A1 (en) * 2000-04-13 2002-02-07 Quistgaard Jens U. Mobile ultrasound diagnostic instrument and system using wireless video transmission

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291401A (en) * 1991-11-15 1994-03-01 Telescan, Limited Teleradiology system
US5295485A (en) * 1991-12-13 1994-03-22 Hitachi, Ltd. Ultrasonic diagnostic system
US5715823A (en) * 1996-02-27 1998-02-10 Atlantis Diagnostics International, L.L.C. Ultrasonic diagnostic imaging system with universal access to diagnostic information and images
US5806521A (en) * 1996-03-26 1998-09-15 Sandia Corporation Composite ultrasound imaging apparatus and method
US6289115B1 (en) * 1998-02-20 2001-09-11 Fuji Photo Film Co., Ltd. Medical network system
US6230043B1 (en) * 1998-09-30 2001-05-08 General Electric Company Method and apparatus for capturing and automatically transferring an x-ray image to a remote location
US6159150A (en) * 1998-11-20 2000-12-12 Acuson Corporation Medical diagnostic ultrasonic imaging system with auxiliary processor
US6120447A (en) * 1998-12-31 2000-09-19 General Electric Company Ultrasound image data wireless transmission techniques
US6263094B1 (en) * 1999-04-02 2001-07-17 Agilent Technologies, Inc. Acoustic data acquisition/playback system and method
US6210327B1 (en) * 1999-04-28 2001-04-03 General Electric Company Method and apparatus for sending ultrasound image data to remotely located device
US6351547B1 (en) * 1999-04-28 2002-02-26 General Electric Company Method and apparatus for formatting digital images to conform to communications standard
US6783493B2 (en) * 1999-06-22 2004-08-31 Teratech Corporation Ultrasound probe with integrated electronics
US6963673B1 (en) * 1999-12-28 2005-11-08 General Electric Company Imaging system adapted to partially preprocess image data
US6569097B1 (en) * 2000-07-21 2003-05-27 Diagnostics Ultrasound Corporation System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US6725087B1 (en) * 2000-09-19 2004-04-20 Telectroscan, Inc. Method and apparatus for remote imaging of biological tissue by electrical impedance tomography through a communications network
US20040030585A1 (en) * 2000-10-25 2004-02-12 Aviram Sariel Method and system for remote image reconstitution and processing and imaging data collectors communicating with the system
US6829378B2 (en) * 2001-05-04 2004-12-07 Biomec, Inc. Remote medical image analysis
US20030083563A1 (en) * 2001-10-25 2003-05-01 Igor Katsman Medical imaging data streaming

Cited By (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050288584A1 (en) * 2000-07-21 2005-12-29 Diagnostic Ultrasound Corporation System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US7331925B2 (en) * 2000-07-21 2008-02-19 Verathon, Inc. System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US8221321B2 (en) 2002-06-07 2012-07-17 Verathon Inc. Systems and methods for quantification and classification of fluids in human cavities in ultrasound images
US20060025689A1 (en) * 2002-06-07 2006-02-02 Vikram Chalana System and method to measure cardiac ejection fraction
US8221322B2 (en) 2002-06-07 2012-07-17 Verathon Inc. Systems and methods to improve clarity in ultrasound images
US20070232908A1 (en) * 2002-06-07 2007-10-04 Yanwei Wang Systems and methods to improve clarity in ultrasound images
US7819806B2 (en) 2002-06-07 2010-10-26 Verathon Inc. System and method to identify and measure organ wall boundaries
US20080262356A1 (en) * 2002-06-07 2008-10-23 Vikram Chalana Systems and methods for ultrasound imaging using an inertial reference unit
US20070276254A1 (en) * 2002-06-07 2007-11-29 Fuxing Yang System and method to identify and measure organ wall boundaries
US20100036252A1 (en) * 2002-06-07 2010-02-11 Vikram Chalana Ultrasound system and method for measuring bladder wall thickness and mass
US20090062644A1 (en) * 2002-06-07 2009-03-05 Mcmorrow Gerald System and method for ultrasound harmonic imaging
US20040127797A1 (en) * 2002-06-07 2004-07-01 Bill Barnard System and method for measuring bladder wall thickness and presenting a bladder virtual image
US9993225B2 (en) 2002-08-09 2018-06-12 Verathon Inc. Instantaneous ultrasonic echo measurement of bladder volume with a limited number of ultrasound beams
US8308644B2 (en) 2002-08-09 2012-11-13 Verathon Inc. Instantaneous ultrasonic measurement of bladder volume
US20100198075A1 (en) * 2002-08-09 2010-08-05 Verathon Inc. Instantaneous ultrasonic echo measurement of bladder volume with a limited number of ultrasound beams
US20070004980A1 (en) * 2002-12-09 2007-01-04 Adrian Warner Distributed medical imaging system
US8874203B2 (en) 2003-02-21 2014-10-28 Electro-Cat, Llc Methods for measuring cross-sectional areas in luminal organs
US10524685B2 (en) 2003-02-21 2020-01-07 3Dt Holdings, Llc Methods for generating luminal organ profiles using impedance
US11510589B2 (en) 2003-02-21 2022-11-29 3Dt Holdings, Llc Body lumen junction localization
US10413211B2 (en) 2003-02-21 2019-09-17 3Dt Holdings, Llc Systems, devices, and methods for mapping organ profiles
US10172538B2 (en) 2003-02-21 2019-01-08 3Dt Holdings, Llc Body lumen junction localization
US11490829B2 (en) 2003-02-21 2022-11-08 3Dt Holdings, Llc Systems, devices, and methods for mapping organ profiles
US20080242985A1 (en) * 2003-05-20 2008-10-02 Vikram Chalana 3d ultrasound-based instrument for non-invasive measurement of amniotic fluid volume
US20050114175A1 (en) * 2003-11-25 2005-05-26 O'dea Paul J. Method and apparatus for managing ultrasound examination information
US11207496B2 (en) 2005-08-24 2021-12-28 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US10004875B2 (en) 2005-08-24 2018-06-26 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US9345422B2 (en) 2006-10-23 2016-05-24 Bard Acess Systems, Inc. Method of locating the tip of a central venous catheter
US9265443B2 (en) 2006-10-23 2016-02-23 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US9833169B2 (en) 2006-10-23 2017-12-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8167803B2 (en) 2007-05-16 2012-05-01 Verathon Inc. System and method for bladder detection using harmonic imaging
US8133181B2 (en) 2007-05-16 2012-03-13 Verathon Inc. Device, system and method to measure abdominal aortic aneurysm diameter
US20100036242A1 (en) * 2007-05-16 2010-02-11 Jongtae Yuk Device, system and method to measure abdominal aortic aneurysm diameter
US20090264757A1 (en) * 2007-05-16 2009-10-22 Fuxing Yang System and method for bladder detection using harmonic imaging
US20110034209A1 (en) * 2007-06-18 2011-02-10 Boris Rubinsky Wireless technology as a data conduit in three-dimensional ultrasonogray
US20100255795A1 (en) * 2007-06-18 2010-10-07 The Regents Of The University Of California Cellular Phone Enabled Medical Imaging System
US20090112089A1 (en) * 2007-10-27 2009-04-30 Bill Barnard System and method for measuring bladder wall thickness and presenting a bladder virtual image
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US11134915B2 (en) 2007-11-26 2021-10-05 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US11779240B2 (en) 2007-11-26 2023-10-10 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US11707205B2 (en) 2007-11-26 2023-07-25 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US10966630B2 (en) 2007-11-26 2021-04-06 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US11123099B2 (en) 2007-11-26 2021-09-21 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US9492097B2 (en) 2007-11-26 2016-11-15 C. R. Bard, Inc. Needle length determination and calibration for insertion guidance system
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US9526440B2 (en) 2007-11-26 2016-12-27 C.R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10849695B2 (en) 2007-11-26 2020-12-01 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9549685B2 (en) 2007-11-26 2017-01-24 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US9554716B2 (en) 2007-11-26 2017-01-31 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US9681823B2 (en) 2007-11-26 2017-06-20 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US11529070B2 (en) 2007-11-26 2022-12-20 C. R. Bard, Inc. System and methods for guiding a medical instrument
US10602958B2 (en) 2007-11-26 2020-03-31 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US10342575B2 (en) 2007-11-26 2019-07-09 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US9999371B2 (en) 2007-11-26 2018-06-19 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US10238418B2 (en) 2007-11-26 2019-03-26 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US10231753B2 (en) 2007-11-26 2019-03-19 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US10105121B2 (en) 2007-11-26 2018-10-23 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10165962B2 (en) 2007-11-26 2019-01-01 C. R. Bard, Inc. Integrated systems for intravascular placement of a catheter
US7937277B2 (en) 2007-12-27 2011-05-03 Marx James G Systems and methods for workflow processing
US20100169116A1 (en) * 2007-12-27 2010-07-01 Marx James G Systems and methods for workflow processing
US9477809B2 (en) 2007-12-27 2016-10-25 James G. Marx Systems and methods for workflow processing
US20090172036A1 (en) * 2007-12-27 2009-07-02 Marx James G Systems and methods for workflow processing
US20100174994A1 (en) * 2007-12-27 2010-07-08 Marx James G Systems and methods for workflow processing
US7930193B2 (en) 2007-12-27 2011-04-19 Marx James G Systems and methods for workflow processing
US20100006649A1 (en) * 2008-07-11 2010-01-14 Steve Bolton Secure Ballot Box
US11027101B2 (en) 2008-08-22 2021-06-08 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US9907513B2 (en) 2008-10-07 2018-03-06 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US10271762B2 (en) 2009-06-12 2019-04-30 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US9339206B2 (en) 2009-06-12 2016-05-17 Bard Access Systems, Inc. Adaptor for endovascular electrocardiography
US11419517B2 (en) 2009-06-12 2022-08-23 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US10912488B2 (en) 2009-06-12 2021-02-09 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US9445734B2 (en) 2009-06-12 2016-09-20 Bard Access Systems, Inc. Devices and methods for endovascular electrography
US10231643B2 (en) 2009-06-12 2019-03-19 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US10046139B2 (en) 2010-08-20 2018-08-14 C. R. Bard, Inc. Reconfirmation of ECG-assisted catheter tip placement
US9415188B2 (en) 2010-10-29 2016-08-16 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US8801693B2 (en) 2010-10-29 2014-08-12 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US11000205B2 (en) 2012-04-05 2021-05-11 Bard Access Systems, Inc. Devices and systems for navigation and positioning a central venous catheter within a patient
US11185374B2 (en) 2012-04-05 2021-11-30 C. R. Bard, Inc. Apparatus and methods relating to intravascular positioning of distal end of catheter
US11759268B2 (en) 2012-04-05 2023-09-19 C. R. Bard, Inc. Apparatus and methods relating to intravascular positioning of distal end of catheter
US10159531B2 (en) 2012-04-05 2018-12-25 C. R. Bard, Inc. Apparatus and methods relating to intravascular positioning of distal end of catheter
US11172843B2 (en) 2012-04-05 2021-11-16 Bard Access Systems, Inc. Devices and systems for navigation and positioning a central venous catheter within a patient
US9232934B2 (en) 2012-12-14 2016-01-12 General Electric Company Systems and methods for communicating ultrasound probe location and image information
US9443633B2 (en) 2013-02-26 2016-09-13 Accuray Incorporated Electromagnetically actuated multi-leaf collimator
US9433378B2 (en) 2013-04-03 2016-09-06 Koninklijke Philips N.V. Modular processing of magnetic resonance data
US9320918B2 (en) 2013-04-03 2016-04-26 Koninklijke Philips N.V. Modular processing of magnetic resonance data
US10863920B2 (en) 2014-02-06 2020-12-15 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US9839372B2 (en) 2014-02-06 2017-12-12 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US11026630B2 (en) 2015-06-26 2021-06-08 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US10220172B2 (en) 2015-11-25 2019-03-05 Resmed Limited Methods and systems for providing interface components for respiratory therapy
US11103664B2 (en) 2015-11-25 2021-08-31 ResMed Pty Ltd Methods and systems for providing interface components for respiratory therapy
US11791042B2 (en) 2015-11-25 2023-10-17 ResMed Pty Ltd Methods and systems for providing interface components for respiratory therapy
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US11504097B2 (en) 2017-09-01 2022-11-22 Clarius Mobile Health Corp. Systems and methods for acquiring raw ultrasound data from an ultrasound machine using a wirelessly connected device
US11621518B2 (en) 2018-10-16 2023-04-04 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections

Also Published As

Publication number Publication date
US20030195424A1 (en) 2003-10-16
AU2001280707A1 (en) 2002-02-05
EP1367942A4 (en) 2009-11-18
EP1367942A2 (en) 2003-12-10
US6569097B1 (en) 2003-05-27
US20070118412A1 (en) 2007-05-24
WO2002007586A2 (en) 2002-01-31
EP1367942B1 (en) 2018-05-30
JP2004527266A (en) 2004-09-09
WO2002007586A3 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
US7189205B2 (en) System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US7331925B2 (en) System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US6319201B1 (en) Imaging device and associated method
EP0936889B1 (en) Enhanced breast imaging/biopsy system employing targeted ultrasound
CN100382766C (en) Ultrasonic diagnosis device and operation apparatus
US6106463A (en) Medical imaging device and associated method including flexible display
US20050065438A1 (en) System and method of capturing and managing information during a medical diagnostic imaging procedure
EP2113201B1 (en) Moveable ultrasound element for use in medical diagnostic equipment
JP6011378B2 (en) Ultrasound diagnostic imaging equipment
US10813625B2 (en) Ultrasound image diagnostic apparatus
US6306090B1 (en) Ultrasonic medical system and associated method
US20030191389A1 (en) Ultrasonic diagnostic device, function extending method related to ultrasonic diagnosis, and method of providing extension function related to ultrasonic diagnosis
JP4621338B2 (en) Ultrasonic remote diagnosis system
US20050049495A1 (en) Remote assistance for medical diagnostic ultrasound
WO2009094132A2 (en) Medical data collection device
US20040073094A1 (en) Fetal monitoring systems with ambulatory patient units and telemetric links for improved uses
JP2006508760A (en) Distributed medical imaging system
KR20170047873A (en) Ultrasound imaging apparatus and control method for the same
CN106983521A (en) Supersonic imaging apparatus
AU748589B2 (en) Medical imaging device and associated method
CN203252666U (en) Ultrasonic image diagnosis device and ultrasonic probe
KR100393020B1 (en) Ultrasonic diagnostic system generating the same image as that of the source system and remote diagnostic method
JP2001357134A (en) Image photographing device and image processor
JP2000197612A (en) Remote medical treatment system
KR100704792B1 (en) Method and System for Transmitting Ultrasound Image by Using Mobile Communication Terminal

Legal Events

Date Code Title Description
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20150313