WO2007007414A1 - Delay sum type sensor array - Google Patents

Delay sum type sensor array Download PDF

Info

Publication number
WO2007007414A1
WO2007007414A1 PCT/JP2005/013059 JP2005013059W WO2007007414A1 WO 2007007414 A1 WO2007007414 A1 WO 2007007414A1 JP 2005013059 W JP2005013059 W JP 2005013059W WO 2007007414 A1 WO2007007414 A1 WO 2007007414A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing means
signal processing
sensor array
directivity
type sensor
Prior art date
Application number
PCT/JP2005/013059
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyokatsu Iwahashi
Yasutaka Nakajima
Hirotada Tomizawa
Original Assignee
Rion Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co., Ltd. filed Critical Rion Co., Ltd.
Priority to PCT/JP2005/013059 priority Critical patent/WO2007007414A1/en
Priority to JP2007524504A priority patent/JPWO2007007414A1/en
Publication of WO2007007414A1 publication Critical patent/WO2007007414A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones

Definitions

  • the present invention relates to a delay-and-sum type sensor array device in which the directivity of the sensor array is variable.
  • a plurality of microphones M1, M2,..., MN (hereinafter referred to as “linearly arranged microphone array”) It is known that it is realized by multiplying each output by an appropriate delay amount dl, d2,..., DN by a delay device 100 and calculating the sum of the outputs of these multipliers 100 by an adder 101. Yes.
  • the directivity performance is characterized by the width of the main lobe M and the size of the side lobe S. As the width of the main lobe M is narrower and the size of the side lobe S is smaller, the directivity performance is higher. Sex is expressed as sharp.
  • Figure 4 shows an example of directional characteristics when the number of microphones is five and the incoming signal frequency is lk Hz.
  • the number of microphones Ml, M2, ⁇ , MN shown in Fig. 3 can be increased, but the directivity depends on the wavelength of the target sound wave. Therefore, in order to obtain a sharp directivity at a low frequency, there is a problem that not only a large number of microphones M1, M2,.
  • the present invention has been made in view of such problems of the prior art, and its object is to provide a delay-and-sum type sensor having sharp directivity without increasing the number of sensors.
  • An array device is to be provided.
  • an invention according to claim 1 is directed to a sensor array in which a plurality of sensors are arranged, a plurality of signal processing means for generating various directivity characteristics of the sensor array, Computational processing means for performing arithmetic processing on various directional characteristics generated by the signal processing means is provided.
  • the invention according to claim 2 is a sensor array in which a plurality of sensors are arranged, first signal processing means for generating a directional characteristic that maximizes a gain in a target direction for the sensor array, and the sensor array. Therefore, the second signal processing means for generating a directivity characteristic similar to the directivity characteristic by the first signal processing means and the directivity generated by the second signal processing means are minimized. Computation processing means for calculating a difference between the characteristic and the directivity characteristic generated by the first signal processing means is provided.
  • the invention according to claim 3 is the delay sum type sensor array device according to claim 1 or 2, wherein the sensor is a microphone.
  • the directivity can be emphasized by the signal processing means for changing the directivity.
  • the directivity can be changed by setting the delay circuit parameters, changing the weight of the output of each sensor, or setting the zero and pole by using a spatial filter.
  • sharp directivity can be obtained without increasing the number of sensors.
  • the output signal of the first signal processing means having the maximum gain in the target direction, and the side lobe having the minimum gain in the target direction and similar to the first signal processing means
  • the side lobe component can be suppressed and the main lobe component can be obtained.
  • sharp directivity can be obtained without increasing the number of sensors.
  • a microphone array having directivity characteristics in each direction can be created, so that the movement of a moving sound source in a different direction can be captured. Can do.
  • FIG. 1 is a block diagram of a delay sum type sensor array device according to the present invention.
  • FIG. 1 is a block diagram of the delay-and-sum type sensor array device according to the present invention
  • FIG. 2 is a directional characteristic diagram.
  • the delay sum type sensor array apparatus includes a microphone array 1 in which N microphones M1, M2,..., MN are arranged, and each microphone Ml, M2,. ..., N AZD converters 2 that convert the output signals of MN into digital signals, first signal processing means 3 that generates predetermined directivity from the output signals of each AZD converter 2, and each AZD converter The output signal force of 2
  • the second signal processing means 4 for generating a directivity characteristic different from that of the first signal processing means 3, the control unit 5 for controlling the first signal processing means 3 and the second signal processing means 4, and the first A phase shifter 6 that shifts the phase of the output signal of the signal processing means 3 by ⁇ 2, a multiplier 7 that multiplies the output signal of the second signal processing means 4 by a coefficient k, and an output signal and a multiplier of the phase shifter 6
  • Arithmetic processing means 8 for calculating the difference between the seven output signals is provided.
  • the signal processing means for generating a predetermined directivity from the output signal of each AZD converter 2 is not limited to the first signal processing means 3 and the second signal processing means 4, and three or more signal processing means may be provided. it can. Then, these output signals may be arithmetically processed by the arithmetic processing means 8.
  • the first signal processing means 3 includes N digital filters Fa (l), Fa (2), ..., Fa (N) and N digital filters Fa (l), Fa (2) , ..., It consists of an adder 10 that adds and outputs the output signal of Fa (N).
  • Digital filters Fa (l), Fa (2), ..., Fa (N) have a function to divide the frequency band according to the purpose, such as octave, 1 Z2 octave, 1Z3 octave, etc., and spatial filter function .
  • the second signal processing means 4 also includes N digital filters Fb (l), Fb (2),..., Fb (N) and N digital filters Fb (l), Fb ( 2), ... It consists of an adder 11 that adds and outputs the output signal of Fb (N).
  • Digital filters Fb (l), Fb (2), ..., Fb (N) are functions that divide the frequency band according to the purpose, such as 1 octave, 1Z2 octave, 1Z3 octave, and spatial filter function.
  • the control unit 5 includes digital filters Fa (l), Fa (2), ⁇ , Fa (N) and digital filters Fb (l), Fb (2), ⁇ , Fb (N). Set the parameters.
  • the control unit 5 should be multiplied by the multiplier 7. Indicate the appropriate coefficient k.
  • the phase shifter 6 is provided after the adder 10, but without the phase shifter 6, the ⁇ ⁇ 2 phase shift function is applied to the digital filters Fa (l), Fa (2), ..., Fa (N ).
  • the multiplier 7 optimizes the magnitude of the signal input to the arithmetic processing means 8 by multiplying the output signal of the second signal processing means 4 by an appropriate coefficient k. In the multiplier 7, a table of the coefficient k is created and set in advance.
  • the sound pressure signal captured by the microphone array 1 is converted into a digital signal by the AZD conversion 2.
  • the energy source to be measured is light
  • a photoelectric element array can be used as the sensor array
  • an antenna can be used as the sensor array. In short, it can be replaced with a sensor that matches the energy source to be measured.
  • the signal digitized by the AZD transformation 2 is supplied to the first signal processing means 3 and the second signal processing means 4.
  • the digital filters Fa (l), Fa (2), ..., Fa (N) divide the frequency of the digital signal into 1Z3 octaves and process each signal with a spatial filter.
  • the digital filters Fb (l), Fb (2), ..., Fb (N) divide the frequency of the digital signal into 1Z3 octaves, and each signal is divided by a spatial filter. To process.
  • the frequency band can be divided into 1 octave, 1Z2 octave, etc. according to the purpose. Also, by using a spatial filter, the directivity can be changed by setting the zero and pole. Select the combination of microphones to be used according to the frequency band to be processed.
  • the control unit 5 sets the parameters of the digital filters Fa (l), Fa (2), ..., Fa (N) and the digital filters Fb (l), Fb (2), ..., Fb (N). By changing, it is possible to select the signal to be input to the calorie calculators 10 and 11.
  • a spatial filter is set so as to obtain a directional characteristic that maximizes the gain in the target direction.
  • the spatial filter is set so that the gain in the target direction is minimized and the side lobe is similar to that of the first signal processing means 3.
  • the output signal power of the digital filters Fa (l), Fa (2), ..., Fa (N) Are added by the output signal power adder 11 of the digital filters Fb (l), Fb (2),..., Fb (N).
  • the phase shifter 6 shifts the phase of the output signal of the adder 10 by ⁇ ⁇ 2
  • the multiplier 7 multiplies the output signal of the adder 11 by an appropriate coefficient k to the signal input to the arithmetic processing means 8. Optimize the size.
  • Waveform A shown in FIG. 2 shows the output signal of phase shifter 6, and waveform B shows the output signal of multiplier 7.
  • the arithmetic processing means 8 calculates the difference between the output signal of the phase shifter 6 and the output signal of the multiplier 7. Then, the side lobe components are similar and decrease, and the main lobe component has no suppression effect on the component in the target direction.Therefore, the output signal of the arithmetic processing means 8 is the target direction as shown in waveform C in FIG. Has sharp characteristics. Therefore, if a directional characteristic is created in each direction, the movement of the moving sound source can be captured. Industrial applicability

Abstract

[PROBLEMS] To provide a delay sum type sensor array exhibiting sharp directivity without increasing the number of sensors. [MEANS FOR SOLVING PROBLEMS] The delay sum type sensor array comprises a microphone array (1) arranged with a plurality of microphones (M1, M2,..., MN), a first signal processing means (3) creating directivity characteristics for maximizing the gain of the microphone array (1) in the target direction, a second signal processing means (4) creating directivity characteristics for minimizing the gain of the microphone array (1) in the target direction and allowing the side lobe to be similar to the directivity characteristics by the first signal processing means (3), and an operation processing means (8) for calculating the difference between the directivity characteristics created by the first signal processing means (3) and the directivity characteristics created by the second signal processing means (4).

Description

明 細 書  Specification
遅延和型センサアレイ装置  Delay and sum sensor array device
技術分野  Technical field
[0001] 本発明は、センサアレイの指向特性を可変にした遅延和型センサアレイ装置に関 する。  [0001] The present invention relates to a delay-and-sum type sensor array device in which the directivity of the sensor array is variable.
背景技術  Background art
[0002] 一般的な遅延和型マイクロホンアレイ装置としては、図 3に示すように、直線状に配 置された複数のマイクロホン Ml, M2, · ··, MN (以下「直線配置マイクロホンアレイ」と いう)個々の出力に適当な遅延量 dl ,d2, · · · ,dNを遅延器 100により乗じ、これら乗算 器 100の出力の和を加算器 101で計算して実現されることが知られている。指向性 の性能は、図 4に示すように、メインローブ Mの幅とサイドローブ Sの大きさで特徴付 けられ、メインローブ Mの幅が狭ぐ且つサイドローブ Sの大きさが小さいほど指向性 は鋭いと表現される。なお、図 4はマイクロホンが 5本の場合で到来信号周波数が lk Hzの指向特性の一例を示す。  As a general delay-and-sum type microphone array apparatus, as shown in FIG. 3, a plurality of microphones M1, M2,..., MN (hereinafter referred to as “linearly arranged microphone array”) It is known that it is realized by multiplying each output by an appropriate delay amount dl, d2,..., DN by a delay device 100 and calculating the sum of the outputs of these multipliers 100 by an adder 101. Yes. As shown in Fig. 4, the directivity performance is characterized by the width of the main lobe M and the size of the side lobe S. As the width of the main lobe M is narrower and the size of the side lobe S is smaller, the directivity performance is higher. Sex is expressed as sharp. Figure 4 shows an example of directional characteristics when the number of microphones is five and the incoming signal frequency is lk Hz.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力し、鋭い指向性を実現するためには、図 3に示すマイクロホン Ml, M2, · ··, M Nの数を多くすればよいが、指向性は目的とする音波の波長にも依存するため、低い 周波数において鋭い指向性を得るには多くのマイクロホン Ml, M2, · ··, MNを必要 とするばかりでなぐ直線配置マイクロホンアレイ 102の長さも長くなるという問題があ る。 [0003] In order to achieve a sharp directivity, the number of microphones Ml, M2, ···, MN shown in Fig. 3 can be increased, but the directivity depends on the wavelength of the target sound wave. Therefore, in order to obtain a sharp directivity at a low frequency, there is a problem that not only a large number of microphones M1, M2,.
[0004] 本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、そ の目的とするところは、センサの数を増やすことなぐ鋭い指向性を有する遅延和型 センサアレイ装置を提供しょうとするものである。  [0004] The present invention has been made in view of such problems of the prior art, and its object is to provide a delay-and-sum type sensor having sharp directivity without increasing the number of sensors. An array device is to be provided.
課題を解決するための手段  Means for solving the problem
[0005] 上記課題を解決すべく請求項 1に係る発明は、複数のセンサを配置したセンサァレ ィと、このセンサアレイの指向特性を各種生成する複数の信号処理手段と、これらの 信号処理手段で生成された各種の指向特性について演算処理する演算処理手段 を備えたものである。 [0005] In order to solve the above-mentioned problem, an invention according to claim 1 is directed to a sensor array in which a plurality of sensors are arranged, a plurality of signal processing means for generating various directivity characteristics of the sensor array, Computational processing means for performing arithmetic processing on various directional characteristics generated by the signal processing means is provided.
[0006] 請求項 2に係る発明は、複数のセンサを配置したセンサアレイと、このセンサアレイに とって目的方向の利得が最大となる指向特性を生成する第 1信号処理手段と、前記 センサアレイにとって目的方向の利得が最小となると共にサイドローブが前記第 1信 号処理手段による指向特性と類似する指向特性を生成する第 2信号処理手段と、こ の第 2信号処理手段で生成された指向特性と前記第 1信号処理手段で生成された 指向特性との差分を算出する演算処理手段を備えたものである。  [0006] The invention according to claim 2 is a sensor array in which a plurality of sensors are arranged, first signal processing means for generating a directional characteristic that maximizes a gain in a target direction for the sensor array, and the sensor array. Therefore, the second signal processing means for generating a directivity characteristic similar to the directivity characteristic by the first signal processing means and the directivity generated by the second signal processing means are minimized. Computation processing means for calculating a difference between the characteristic and the directivity characteristic generated by the first signal processing means is provided.
[0007] 請求項 3に係る発明は、請求項 1又は 2記載の遅延和型センサアレイ装置において、 前記センサをマイクロホンとした。  [0007] The invention according to claim 3 is the delay sum type sensor array device according to claim 1 or 2, wherein the sensor is a microphone.
発明の効果  The invention's effect
[0008] 請求項 1に係る発明によれば、指向特性を変更する信号処理手段により、指向特 性を強調することができる。例えば、遅延回路のパラメータの設定、各センサの出力 の重み付け変更や空間フィルタの使用による零点や極の設定などにより、指向特性 を変更することができる。また、センサの数を増やすことなぐ鋭い指向性を得ることが できる。  [0008] According to the invention of claim 1, the directivity can be emphasized by the signal processing means for changing the directivity. For example, the directivity can be changed by setting the delay circuit parameters, changing the weight of the output of each sensor, or setting the zero and pole by using a spatial filter. In addition, sharp directivity can be obtained without increasing the number of sensors.
[0009] 請求項 2に係る発明によれば、目的方向に最大利得を有する第 1信号処理手段の 出力信号と、目的方向に最小利得を有すると共に第 1信号処理手段と類似のサイド ローブを有する第 2信号処理手段の出力信号の差分を求めることで、サイドローブ成 分を抑制し、メインローブ成分 ¾|¾くすることができる。また、センサの数を増やすこと なぐ鋭い指向性を得ることができる。  [0009] According to the invention of claim 2, the output signal of the first signal processing means having the maximum gain in the target direction, and the side lobe having the minimum gain in the target direction and similar to the first signal processing means By obtaining the difference between the output signals of the second signal processing means, the side lobe component can be suppressed and the main lobe component can be obtained. In addition, sharp directivity can be obtained without increasing the number of sensors.
[0010] 請求項 3に係る発明によれば、センサをマイクロホンにすることによって、各方向に 指向特性を有するマイクロホンアレイを作ることができるので、異なる方向、または移 動する音源の動きを捉えることができる。  [0010] According to the invention according to claim 3, by using a microphone as a sensor, a microphone array having directivity characteristics in each direction can be created, so that the movement of a moving sound source in a different direction can be captured. Can do.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明に係る遅延和型センサアレイ装置のブロック構成図  FIG. 1 is a block diagram of a delay sum type sensor array device according to the present invention.
[図 2]指向特性図  [Figure 2] Directional characteristics
[図 3]従来の遅延和型マイクロホンアレイ装置のブロック構成図 [図 4]従来の指向特性図 [Figure 3] Block diagram of a conventional delay-and-sum type microphone array device [Figure 4] Conventional directional pattern
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下に本発明の実施の形態を添付図面に基づいて説明する。ここで、図 1は本発 明に係る遅延和型センサアレイ装置のブロック構成図、図 2は指向特性図である。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Here, FIG. 1 is a block diagram of the delay-and-sum type sensor array device according to the present invention, and FIG. 2 is a directional characteristic diagram.
[0013] 本発明に係る遅延和型センサアレイ装置は、図 1に示すように、 N個のマイクロホン Ml, M2, · ··, MNを配置したマイクロホンアレイ 1と、各マイクロホン Ml, M2, · ··, M Nの出力信号をデジタル信号に変換する N個の AZD変換器 2と、各 AZD変換器 2 の出力信号から所定の指向特性を生成する第 1信号処理手段 3と、各 AZD変換器 2の出力信号力 第 1信号処理手段 3と異なる指向特性を生成する第 2信号処理手 段 4と、第 1信号処理手段 3と第 2信号処理手段 4を制御する制御部 5と、第 1信号処 理手段 3の出力信号の位相を π Ζ2シフトする位相シフト器 6と、第 2信号処理手段 4 の出力信号に係数 kを乗ずる乗算器 7と、位相シフト器 6の出力信号と乗算器 7の出 力信号の差分を算出する演算処理手段 8を備えている。  As shown in FIG. 1, the delay sum type sensor array apparatus according to the present invention includes a microphone array 1 in which N microphones M1, M2,..., MN are arranged, and each microphone Ml, M2,. ..., N AZD converters 2 that convert the output signals of MN into digital signals, first signal processing means 3 that generates predetermined directivity from the output signals of each AZD converter 2, and each AZD converter The output signal force of 2 The second signal processing means 4 for generating a directivity characteristic different from that of the first signal processing means 3, the control unit 5 for controlling the first signal processing means 3 and the second signal processing means 4, and the first A phase shifter 6 that shifts the phase of the output signal of the signal processing means 3 by πΖ2, a multiplier 7 that multiplies the output signal of the second signal processing means 4 by a coefficient k, and an output signal and a multiplier of the phase shifter 6 Arithmetic processing means 8 for calculating the difference between the seven output signals is provided.
[0014] なお、各 AZD変換器 2の出力信号から所定の指向特性を生成する信号処理手段 としては、第 1信号処理手段 3や第 2信号処理手段 4に限られず、 3つ以上設けること ができる。そして、それらの出力信号を演算処理手段 8により演算処理してもよい。  [0014] The signal processing means for generating a predetermined directivity from the output signal of each AZD converter 2 is not limited to the first signal processing means 3 and the second signal processing means 4, and three or more signal processing means may be provided. it can. Then, these output signals may be arithmetically processed by the arithmetic processing means 8.
[0015] 第 1信号処理手段 3は、 N個のデジタルフィルタ Fa(l), Fa(2), · ··, Fa(N)と、 N個の デジタルフィルタ Fa(l), Fa(2), · ··, Fa(N)の出力信号を加算して出力する加算器 10 からなる。デジタルフィルタ Fa(l), Fa(2), · ··, Fa(N)は、周波数バンドをオクターブ、 1 Z2オクターブ、 1Z3オクターブなど、 目的に応じて分割する機能と、空間フィルタ機 能を有する。  [0015] The first signal processing means 3 includes N digital filters Fa (l), Fa (2), ..., Fa (N) and N digital filters Fa (l), Fa (2) , ..., It consists of an adder 10 that adds and outputs the output signal of Fa (N). Digital filters Fa (l), Fa (2), ..., Fa (N) have a function to divide the frequency band according to the purpose, such as octave, 1 Z2 octave, 1Z3 octave, etc., and spatial filter function .
[0016] また、第 2信号処理手段 4も、 N個のデジタルフィルタ Fb(l), Fb(2), · ··, Fb(N)と、 N 個のデジタルフィルタ Fb(l), Fb(2), · ··, Fb(N)の出力信号を加算して出力する加算 器 11からなる。デジタルフィルタ Fb(l), Fb(2), · ··, Fb(N)は、周波数バンドを 1ォクタ ーブ、 1Z2オクターブ、 1Z3オクターブなど、 目的に応じて分割する機能と、空間フ ィルタ機能を有する。  The second signal processing means 4 also includes N digital filters Fb (l), Fb (2),..., Fb (N) and N digital filters Fb (l), Fb ( 2), ... It consists of an adder 11 that adds and outputs the output signal of Fb (N). Digital filters Fb (l), Fb (2), ..., Fb (N) are functions that divide the frequency band according to the purpose, such as 1 octave, 1Z2 octave, 1Z3 octave, and spatial filter function. Have
[0017] 制御部 5は、デジタルフィルタ Fa(l), Fa(2), · ··, Fa(N)及びデジタルフィルタ Fb(l) , Fb(2), · ··, Fb(N)のパラメータを設定する。また、制御部 5は、乗算器 7が乗ずべき 適切な係数 kを指示する。位相シフト器 6を加算器 10の後段に設けているが、位相シ フト器 6を設けずに π Ζ2位相シフト機能をデジタルフィルタ Fa(l), Fa(2), · ··, Fa(N) に組み込むことも可能である。乗算器 7は、第 2信号処理手段 4の出力信号に適切な 係数 kを乗ずることで、演算処理手段 8へ入力される信号の大きさを最適化する。乗 算器 7には、係数 kのテーブルが予め作成されて設定されてある。 [0017] The control unit 5 includes digital filters Fa (l), Fa (2), ···, Fa (N) and digital filters Fb (l), Fb (2), ···, Fb (N). Set the parameters. The control unit 5 should be multiplied by the multiplier 7. Indicate the appropriate coefficient k. The phase shifter 6 is provided after the adder 10, but without the phase shifter 6, the π Ζ2 phase shift function is applied to the digital filters Fa (l), Fa (2), ..., Fa (N ). The multiplier 7 optimizes the magnitude of the signal input to the arithmetic processing means 8 by multiplying the output signal of the second signal processing means 4 by an appropriate coefficient k. In the multiplier 7, a table of the coefficient k is created and set in advance.
[0018] 以上のように構成した本発明に係る遅延和型センサアレイ装置の動作にっ 、て説 明する。先ず、マイクロホンアレイ 1で取り込んだ音圧信号が、 AZD変翻2でデジ タル信号にされる。ここで、計測対象となるエネルギー源が光であればセンサアレイと して光電素子アレイを用い、電波であればセンサアレイとしてアンテナを用いることが できる。要は、計測対象となるエネルギー源に合ったセンサに置き換えることができる The operation of the delay-and-sum type sensor array apparatus according to the present invention configured as described above will be described. First, the sound pressure signal captured by the microphone array 1 is converted into a digital signal by the AZD conversion 2. Here, if the energy source to be measured is light, a photoelectric element array can be used as the sensor array, and if it is a radio wave, an antenna can be used as the sensor array. In short, it can be replaced with a sensor that matches the energy source to be measured.
[0019] 次いで、 AZD変翻 2でデジタル化された信号は、第 1信号処理手段 3と第 2信号 処理手段 4に供給される。第 1信号処理手段 3では、デジタルフィルタ Fa(l), Fa(2), · ··, Fa(N)がデジタル信号を 1Z3オクターブ毎に周波数を分割し、空間フィルタによ り各信号を処理する。同様に、第 2信号処理手段 4でも、デジタルフィルタ Fb(l), Fb( 2), · ··, Fb(N)がデジタル信号を 1Z3オクターブ毎に周波数を分割し、空間フィルタ により各信号を処理する。 Next, the signal digitized by the AZD transformation 2 is supplied to the first signal processing means 3 and the second signal processing means 4. In the first signal processing means 3, the digital filters Fa (l), Fa (2), ..., Fa (N) divide the frequency of the digital signal into 1Z3 octaves and process each signal with a spatial filter. To do. Similarly, in the second signal processing means 4, the digital filters Fb (l), Fb (2), ..., Fb (N) divide the frequency of the digital signal into 1Z3 octaves, and each signal is divided by a spatial filter. To process.
[0020] 周波数バンドは、 目的に応じて 1オクターブ、 1Z2オクターブなどに分割することが できる。また、空間フィルタを用いることで、零点及び極の設定により、指向特性を可 変することができる。また、処理する周波数バンドによって、使用するマイクロホンの 組み合わせを選択する。制御部 5は、デジタルフィルタ Fa(l), Fa(2), · ··, Fa(N)及び デジタルフィルタ Fb(l), Fb(2), · ··, Fb(N)のパラメータの設定を変更することで、カロ 算器 10, 11に入力させる信号を選択することができる。  [0020] The frequency band can be divided into 1 octave, 1Z2 octave, etc. according to the purpose. Also, by using a spatial filter, the directivity can be changed by setting the zero and pole. Select the combination of microphones to be used according to the frequency band to be processed. The control unit 5 sets the parameters of the digital filters Fa (l), Fa (2), ..., Fa (N) and the digital filters Fb (l), Fb (2), ..., Fb (N). By changing, it is possible to select the signal to be input to the calorie calculators 10 and 11.
[0021] 第 1信号処理手段 3では、 目的方向の利得が最大になる指向特性が得られるよう空 間フィルタが設定されている。また、第 2信号処理手段 4では、 目的方向の利得が最 小になると共にサイドローブが第 1信号処理手段 3と類似するよう空間フィルタが設定 されている。  [0021] In the first signal processing means 3, a spatial filter is set so as to obtain a directional characteristic that maximizes the gain in the target direction. In the second signal processing means 4, the spatial filter is set so that the gain in the target direction is minimized and the side lobe is similar to that of the first signal processing means 3.
[0022] 次いで、デジタルフィルタ Fa(l), Fa(2), · ··, Fa(N)の出力信号力 加算器 10でカロ 算され、デジタルフィルタ Fb(l), Fb(2), · ··, Fb(N)の出力信号力 加算器 11で加算 される。更に、位相シフト器 6が加算器 10の出力信号の位相を π Ζ2シフトし、乗算 器 7が加算器 11の出力信号に適切な係数 kを乗じて演算処理手段 8へ入力される信 号の大きさを最適化する。図 2に示す波形 Aは位相シフト器 6の出力信号を示し、波 形 Bは乗算器 7の出力信号を示す。 [0022] Next, the output signal power of the digital filters Fa (l), Fa (2), ..., Fa (N) Are added by the output signal power adder 11 of the digital filters Fb (l), Fb (2),..., Fb (N). Further, the phase shifter 6 shifts the phase of the output signal of the adder 10 by π Ζ2, and the multiplier 7 multiplies the output signal of the adder 11 by an appropriate coefficient k to the signal input to the arithmetic processing means 8. Optimize the size. Waveform A shown in FIG. 2 shows the output signal of phase shifter 6, and waveform B shows the output signal of multiplier 7.
[0023] 次いで、演算処理手段 8において、位相シフト器 6の出力信号と乗算器 7の出力信 号の差分が算出される。すると、サイドローブ成分は類似するので減少し、メインロー ブ成分は目的方向の成分に抑制効果が働力ないので、演算処理手段 8の出力信号 は、図 2に示す波形 Cのように、目的方向に対して鋭い特性を有するようになる。 従って、各方向に指向特性を作れば、移動する音源の動きを捉えることができる。 産業上の利用可能性 Next, the arithmetic processing means 8 calculates the difference between the output signal of the phase shifter 6 and the output signal of the multiplier 7. Then, the side lobe components are similar and decrease, and the main lobe component has no suppression effect on the component in the target direction.Therefore, the output signal of the arithmetic processing means 8 is the target direction as shown in waveform C in FIG. Has sharp characteristics. Therefore, if a directional characteristic is created in each direction, the movement of the moving sound source can be captured. Industrial applicability
[0024] センサの数や長さをあまり大きくすることなぐ指向特性を容易に設定することが可 能になるため、使用目的に応じた所望な指向特性を有するセンサアレイ装置を作る ことができ、あらゆる計測分野への利用拡大が期待される。 [0024] Since it becomes possible to easily set directional characteristics without increasing the number and length of sensors, a sensor array device having desired directional characteristics according to the purpose of use can be produced. Expansion of use in all measurement fields is expected.

Claims

請求の範囲 The scope of the claims
[1] 複数のセンサを配置したセンサアレイと、このセンサアレイの指向特性を各種生成す る複数の信号処理手段と、これらの信号処理手段で生成された各種の指向特性に ついて演算処理する演算処理手段を備えたことを特徴とする遅延和型センサアレイ 装置。  [1] A sensor array in which a plurality of sensors are arranged, a plurality of signal processing means for generating various directional characteristics of the sensor array, and an arithmetic operation for processing various directional characteristics generated by these signal processing means A delay sum type sensor array device comprising processing means.
[2] 複数のセンサを配置したセンサアレイと、このセンサアレイにとって目的方向の利得 が最大となる指向特性を生成する第 1信号処理手段と、前記センサアレイにとって目 的方向の利得が最小となると共にサイドローブが前記第 1信号処理手段による指向 特性と類似する指向特性を生成する第 2信号処理手段と、この第 2信号処理手段で 生成された指向特性と前記第 1信号処理手段で生成された指向特性との差分を算 出する演算処理手段を備えたことを特徴とする遅延和型センサアレイ装置。  [2] A sensor array in which a plurality of sensors are arranged, a first signal processing means for generating a directional characteristic that maximizes the gain in the target direction for the sensor array, and a gain in the target direction for the sensor array is minimized. And a second signal processing means for generating a directional characteristic similar to the directional characteristic by the first signal processing means, and a directional characteristic generated by the second signal processing means and the first signal processing means. A delay-and-sum type sensor array device comprising arithmetic processing means for calculating a difference from the directivity characteristic.
[3] 前記センサがマイクロホンである請求項 1又は 2記載の遅延和型センサアレイ装置。  3. The delay sum type sensor array device according to claim 1 or 2, wherein the sensor is a microphone.
PCT/JP2005/013059 2005-07-14 2005-07-14 Delay sum type sensor array WO2007007414A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/013059 WO2007007414A1 (en) 2005-07-14 2005-07-14 Delay sum type sensor array
JP2007524504A JPWO2007007414A1 (en) 2005-07-14 2005-07-14 Delay and sum sensor array device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/013059 WO2007007414A1 (en) 2005-07-14 2005-07-14 Delay sum type sensor array

Publications (1)

Publication Number Publication Date
WO2007007414A1 true WO2007007414A1 (en) 2007-01-18

Family

ID=37636821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013059 WO2007007414A1 (en) 2005-07-14 2005-07-14 Delay sum type sensor array

Country Status (2)

Country Link
JP (1) JPWO2007007414A1 (en)
WO (1) WO2007007414A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1962546A3 (en) * 2007-02-26 2008-09-17 Yamaha Corporation Sensitive silicon microphone with wide dynamic range
DE202009001961U1 (en) 2009-03-11 2010-07-29 Paul Hettich Gmbh & Co. Kg extracting device
US8223981B2 (en) 2008-05-23 2012-07-17 Analog Devices, Inc. Wide dynamic range microphone
JP2013509971A (en) * 2009-11-09 2013-03-21 ソノサイト、インク Beam forming method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1141687A (en) * 1997-07-18 1999-02-12 Toshiba Corp Signal processing unit and signal processing method
JPH1152988A (en) * 1997-08-01 1999-02-26 Nec Corp Control method of adaptive array and adaptive array device
JPH11512194A (en) * 1995-08-29 1999-10-19 ユナイテッド テクノロジーズ コーポレイション Active noise control system using tuned array
JP2002095084A (en) * 2000-09-11 2002-03-29 Oei Service:Kk Directivity reception system
JP2004523752A (en) * 2001-01-30 2004-08-05 トムソン ライセンシング ソシエテ アノニム Apparatus, system and method for signal processing by geometric source separation
JP2004229289A (en) * 2003-01-17 2004-08-12 Samsung Electronics Co Ltd Method and apparatus for forming adaptive beam that utilizes feedback structure
JP2004279390A (en) * 2003-03-17 2004-10-07 Nittobo Acoustic Engineering Co Ltd Beam forming by microphone using indefinite term

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831737B2 (en) * 1986-12-27 1996-03-27 株式会社東芝 Antenna device
JPH10142334A (en) * 1996-09-12 1998-05-29 Secom Co Ltd Ultrasonic measuring apparatus
JP3872953B2 (en) * 1999-12-27 2007-01-24 株式会社東芝 Wireless communication device using adaptive antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11512194A (en) * 1995-08-29 1999-10-19 ユナイテッド テクノロジーズ コーポレイション Active noise control system using tuned array
JPH1141687A (en) * 1997-07-18 1999-02-12 Toshiba Corp Signal processing unit and signal processing method
JPH1152988A (en) * 1997-08-01 1999-02-26 Nec Corp Control method of adaptive array and adaptive array device
JP2002095084A (en) * 2000-09-11 2002-03-29 Oei Service:Kk Directivity reception system
JP2004523752A (en) * 2001-01-30 2004-08-05 トムソン ライセンシング ソシエテ アノニム Apparatus, system and method for signal processing by geometric source separation
JP2004229289A (en) * 2003-01-17 2004-08-12 Samsung Electronics Co Ltd Method and apparatus for forming adaptive beam that utilizes feedback structure
JP2004279390A (en) * 2003-03-17 2004-10-07 Nittobo Acoustic Engineering Co Ltd Beam forming by microphone using indefinite term

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1962546A3 (en) * 2007-02-26 2008-09-17 Yamaha Corporation Sensitive silicon microphone with wide dynamic range
US8223981B2 (en) 2008-05-23 2012-07-17 Analog Devices, Inc. Wide dynamic range microphone
US9008323B2 (en) 2008-05-23 2015-04-14 Invensense, Inc. Wide dynamic range microphone
DE202009001961U1 (en) 2009-03-11 2010-07-29 Paul Hettich Gmbh & Co. Kg extracting device
US9010314B2 (en) 2009-03-11 2015-04-21 Paul Hettich Gmbh & Co. Kg Pull-out device
JP2013509971A (en) * 2009-11-09 2013-03-21 ソノサイト、インク Beam forming method
US9420998B2 (en) 2009-11-09 2016-08-23 Fujifilm Sonosite, Inc. Systems and methods for beam enhancement
EP2498683B1 (en) * 2009-11-09 2017-04-12 FUJIFILM SonoSite, Inc. Systems and methods for beam enhancement

Also Published As

Publication number Publication date
JPWO2007007414A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
RU2185710C2 (en) Method and acoustic transducer for electronic generation of directivity pattern for acoustic signals
JP4732483B2 (en) Directional audio signal processing using oversampled filter banks
KR930001076B1 (en) Array microphone
KR100855132B1 (en) Signal processing system and method for calibrating channel signals supplied from an array of sensors having different operating characteristics
JP4760160B2 (en) Sound collector
JP5493850B2 (en) Signal processing apparatus, microphone array apparatus, signal processing method, and signal processing program
EP1159853B1 (en) Method for shaping the spatial reception amplification characteristic of a converter arrangement and converter arrangement
JP2001510975A (en) Method and device for electronically selecting the dependence of an output signal on the spatial angle of an acoustic signal collision
US7397923B2 (en) Array speaker system
JP2004537944A6 (en) Directional audio signal processing using oversampled filter banks
RU2000106528A (en) METHOD FOR ELECTRONIC FORMATION OF DIRECTION DIAGRAM FOR ACOUSTIC SIGNALS AND DEVICE OF ACOUSTIC SENSOR
WO2007007414A1 (en) Delay sum type sensor array
KR20090055203A (en) Method and apparatus for generating the sound source signal using the virtual speaker
JPH10126878A (en) Microphone device
JP2010263280A (en) Sound signal processor
JP6213916B2 (en) Directional sound system
JPH11289592A (en) Acoustic system using variable directivity microphone system
CN104067632A (en) Method and device for controlling directionality
JP5157572B2 (en) Sound processing apparatus and program
JPH09205697A (en) Directive sound collection device and sound source retrieval device
CN102163426B (en) Fixed point transmission system
Gou et al. Beampattern design for the parametric array loudspeaker using mixed Gaussian directivity method
CN113411720B (en) Digital control sound column with multipath beam steering and implementation method thereof
JP3362338B2 (en) Directional receiving method
JP5444753B2 (en) Filter coefficient calculation method, sound field support device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524504

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05760130

Country of ref document: EP

Kind code of ref document: A1