WO2008080744A1 - Verfahren zum betreiben eines radars und ein radar - Google Patents

Verfahren zum betreiben eines radars und ein radar Download PDF

Info

Publication number
WO2008080744A1
WO2008080744A1 PCT/EP2007/063305 EP2007063305W WO2008080744A1 WO 2008080744 A1 WO2008080744 A1 WO 2008080744A1 EP 2007063305 W EP2007063305 W EP 2007063305W WO 2008080744 A1 WO2008080744 A1 WO 2008080744A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
chirp
frequency
difference
determining
Prior art date
Application number
PCT/EP2007/063305
Other languages
English (en)
French (fr)
Inventor
Wolf Steffens
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP07847804A priority Critical patent/EP2126603B1/de
Priority to AT07847804T priority patent/ATE475107T1/de
Priority to DE502007004526T priority patent/DE502007004526D1/de
Priority to US12/521,395 priority patent/US8378882B2/en
Publication of WO2008080744A1 publication Critical patent/WO2008080744A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/347Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using more than one modulation frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • G01S13/38Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal wherein more than one modulation frequency is used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/536Discriminating between fixed and moving objects or between objects moving at different speeds using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Definitions

  • the present invention relates to a method for operating a radar, in particular a radar for driver assistance system in a motor vehicle, and a radar, which performs the aforementioned method.
  • Driver assistance systems facilitate driving a vehicle in everyday situations, such as driving. when parking, when driving in the column traffic, but also in exceptional situations, e.g. to avoid an accident.
  • the driver assistance systems require for this purpose reliable radar systems which determine the distance to an obstacle and, if appropriate, its relative speed to the vehicle.
  • FMCW Frequency Modulated Continuous Wave Radar
  • the FMCW radar emits an output signal having a monotonically varying frequency according to a plurality of settable modulation rates.
  • the portions of the emitted signal reflected from a potential obstacle are received by the radar.
  • the currently received and the currently emitted signal differ in their frequency as a function of the transit time of an emitted signal to the potential obstacle and the instantaneous modulation rate of the frequency of the emitted signal.
  • An evaluation device determines from the difference of the frequencies the transit time and thus the distance to the potential obstacle.
  • a frequency change also results according to the Doppler effect in a relative movement of the obstacle to the radar. An evaluation of this frequency shift allows the determination of the relative velocity.
  • a single measurement for these two quantities is not tig.
  • a second measurement is performed.
  • the modulation rate in the second measurement is different from the modulation rate in the first measurement. Identification of the contribution from the relative velocity to the frequency offset is identifiable due to independence from the change in the modulation rate of the frequency of the emitted signal, as opposed to the signal propagation time measurements for the distance.
  • the aforementioned method requires that the first measurement be unambiguously attributable to the second measurement. As long as there is only one obstacle, this is possible in a trivial way. However, considerable difficulties arise when receiving signals from multiple objects at different distances and / or at different relative speeds. An assignment of successive measurements to an object requires elaborate search algorithms which, among other things, track the trajectory of an object.
  • the method according to the invention with the features of patent claim 1 provides a method for operating a radar which is particularly suitable for assigning reflected signals from a plurality of objects to each other and for estimating the respective distances and / or relative speeds to the objects.
  • the phase of a signal describes the temporal course of the amplitude.
  • the temporal evolution of the phase is conventionally divided into several fractions according to their time dependence.
  • the frequency describes the temporal change of the phase, this change being constant even over time.
  • the frequency chirp, chirp for short describes the changes in phase, and the change itself also changes continuously over time.
  • a two-fold derivative i. Duplicate differentiation, the phase after time is given a size proportional to the chirp.
  • An embodiment provides that the determination of the first and / or the second chirp signal comprises the following steps: determining a complex spectrum of the difference signal;
  • Im (A) denotes the imaginary part and Re (A) the real part of the adjusted spectrum
  • the first and / or the second chirp signal Determining the first and / or the second chirp signal as the value of the two-phase derivative of the phase after the frequency at the frequency at which the spectrum assumes the extremum.
  • the theoretical spectrum can be determined by a Fourier transform of the difference signal.
  • An embodiment provides that the first frequency-modulated signal has a first modulation rate and the second frequency-modulated signal has a second modulation rate and the first modulation rate and the second modulation rate are different.
  • a first chirp signal corresponds to a second chirp signal if the quotient of the first chirp signal by the first modulation rate differs from the quotient of the second chirp signal by the second modulation rate by no more than a predetermined threshold value. This method is particularly suitable if it can be assumed that the occurring acceleration values are low.
  • An embodiment provides that a first value range of potentially assumed speeds of an object are determined from the frequencies of first and second difference signals, and a second value range of potentially assumed speeds of the object is determined from the first and second chirp signals and the object is determined as being at the speed, which is contained in both value spaces.
  • Fig. 1 is a schematic representation of an exemplary situation in
  • Fig. 2 emitted signals with different modulation rates
  • FIG. 3 illustration for determining distance and speed by means of a radar according to the prior art
  • FIG. 5 block diagram of an embodiment
  • Fig. 8 graph to a problem in the determination of distance
  • FIG. 9 block diagram of an embodiment.
  • FIG. 1 illustrates a typical situation in traffic.
  • a vehicle 1 is preceded by a vehicle 2 and there is a tree 3 at the side of the road.
  • the preceding vehicle 2 has essentially the same speed as the vehicle 1, ie the relative speed is almost 0.
  • the distance is several 10 m.
  • the relative speed of the vehicle 1 to the standing tree 3 corresponds to the speed with which the driver of the vehicle 1 travels.
  • Many other objects with different distances and relative speeds with respect to the vehicle 1 occur in traffic, the tree described here 3 and the preceding vehicle 2 are purely exemplary of the explanation of the embodiments described below. 5a
  • the vehicle 1 has an FMCW radar 4.
  • the radar emits an output signal 5 toward the preceding vehicle 2 and the tree 3.
  • the preceding vehicle 2 reflects a portion of the emitted output signal 5 toward the radar 4.
  • the reflected signal 6 is received by the radar 4.
  • a reflected signal 7 results from the tree which is directed to the radar 4.
  • the FMCW radar modulates the frequency f of the emitted signal 5.
  • the frequency f is changed from an output value with a fixed modulation rate (see Figure 2).
  • the frequency of the now emitted signal 5 has changed, increased in the present example.
  • the distance to the preceding vehicle 2 can thus be determined from the frequency difference between the currently emitted signal 5 and the currently received reflected signal 6.
  • the preceding vehicle 2 has a relative speed with the amount 0, i. no relative speed to the vehicle 1 has.
  • the tree 3 moves toward the vehicle 1. Due to the relative movement, the reflected signal 7 experiences a frequency shift with respect to the emitted signal 5, which is known as a Doppler effect or Doppler shift.
  • the frequency change is to a good approximation proportional to the relative speed. If the radar 4 does not vary the frequency of the emitted signal 5 over time, it can be concluded from the frequency shift to the relative speed.
  • the reflective object for example the tree 3
  • the difference frequency f d of the currently received reflected signal to the currently emitted signal results according to the following relationship:
  • f c denotes the speed of light
  • f c the modulation rate of the frequency of the emitted signal 5
  • v the relative speed.
  • f c can be replaced by the mean frequency of the emitted signal.
  • phase of the difference signal has a time dependence that can be approximately represented by the relationship 2:
  • ⁇ 0 denotes a constant phase
  • f d denotes the difference frequency of the currently reflected signal to the currently emitted signal
  • the so-called frequency chirp
  • t the time.
  • Dependencies of the phase ⁇ of terms in third order of time are negligible for the used FMCW radars in road traffic.
  • the frequency chirp ⁇ corresponds to a non-constant change of the difference frequency f d over time.
  • the frequency chirp ⁇ is composed according to the relationship (3):
  • ds / dt denotes non-linearities of the modulation rate. If the non-linearity of the modulation rate falls below 2,5 10 10 Hz / s 2 , the term is negligible for the chirp ß at typically occurring distances d, velocities v and accelerations a.
  • the product of the mean emission frequency f c of the FMCW radar and the accelerations a, which typically occur in road traffic, is at least one order of magnitude lower than the product of the modulation rate s and the typical occurring speeds v in road traffic.
  • the typical mean emission frequencies are in the range of 7.65 10 10 Hz and the typical modulation rates s in the range of 5.0 10 16 Hz / s.
  • Typical speeds v of a vehicle are in the range between 10 and 50 m / s, while the acceleration values a only reach values of 5m / s 2 in exceptional cases.
  • the frequency chirp ⁇ consequently depends only on the speed v and the modulation rate s.
  • the determination of the chirp ⁇ can be calculated from the time-dependent phase ⁇ by doubly differentiating, i. Deriving by which time is determined, as can be seen from relation (2). In the embodiments described below, however, it proves useful to determine the chirp ß in accordance with the steps described below. In particular, it proves to be sufficient to determine the chirp ß proportional size. In summary, it is shown how the chirp ⁇ or a variable proportional to it is obtained by subtracting it from the frequency twice from a spectrum.
  • a spectrum corresponds to the Fourier transform of the phase or the phase signal. If the phase signal has substantially only one extremum at a frequency f d , the spectrum can be adjusted by the following relationship:
  • the parameters p, ⁇ and ⁇ denote parameters which allow for fitting a theoretical spectrum according to the relationship (4) to a real spectrum.
  • the frequency axis is denoted by f, the frequency of the difference signal by f d and the chirp by ß.
  • the conjugate complex of spectrum A is designated by the abbreviation cc.
  • Relationships (5), (6) and (7) indicate definitions for the quantities used in the spectrum of relationship (4).
  • phase signal or difference signal has more than one extremum
  • a linear combination of spectra A is adjusted according to relationship (4).
  • Each extremum at the frequency f d or each difference signal resulting from different objects is thus assigned its own spectrum A.
  • a phase ⁇ is introduced for the spectrum A.
  • the phase ⁇ indicates the dependence of the spectrum on the frequency axis f.
  • the phase ⁇ is referred to as the phase ⁇ in the frequency space.
  • the phase ⁇ in the frequency domain can be determined from equation (4) after the theoretical spectrum A has been adapted to the measured spectrum. For the phase ⁇ in frequency space, the following applies:
  • the phase ⁇ in frequency space is dependent on the frequency chirp.
  • the frequency chirp ß leads to a widening of the extremum of the spectrum A, which are given by the parameter p. Since this broadening is in the range of a few percent, it is negligible.
  • a variable proportional to the frequency chirp is determined by subtracting the phase ⁇ twice in the frequency domain after the frequency f.
  • the proportionality constant between the two-fold derivative of the phase ⁇ in the frequency domain after the frequency f and the frequency chirp ⁇ is essentially only determined by a selected window function for determining the Fourier transform, e.g. a Gaussian window function, and in the case of a discrete Fourier transformation, it depends on the resolution of the frequency domain.
  • ⁇ a denotes the phase at the frequency f a
  • ⁇ b is the phase at the frequency f b
  • f a is smaller than the frequency f d and the frequency f d is smaller than f b
  • the method for determining the chirp or a variable proportional to the chirp comprises the following steps:
  • a first modulation rate s is set (30).
  • the FMCW radar emits signals 5 for a period of time in which the frequency of the emitted signal is varied according to the first modulation rate s (31).
  • the radar 4 receives two reflected signals 6, 7.
  • the FMCW radar 4 mixes the received reflected signals 6, 7 with the currently emitted signal 5.
  • the resulting mixed products alone become the difference signal between the currently emitted signal and the currently received reflected signals 6, 7 determines, if necessary, the mixers are set up so that only the difference signal is produced.
  • the respective resulting difference frequencies f d of the two reflected signals 6, 7 with respect to the currently emitted signals are indicated by way of example in FIG. 6 as frequency fl and frequency f2.
  • the two frequencies fl, f2 differ.
  • a second measurement is performed, for which the modulation rate s of the frequency of the emitted signal 5 is changed (35).
  • the modulation rate s of the first measurement and the modulation rate s of the second measurement differ.
  • the now resulting spectrum from the difference signals can, for example, look as illustrated in FIG.
  • the spectrum again has two peaks or extremes, this time at the frequencies f3, f4.
  • the dependence of possible distances d on possible relative velocities v can be determined for each of the extremes and is illustrated graphically by way of example in FIG.
  • the two straight lines 21, 22 correspond, for example, to the extremes fl, f2 to the first measurement and the straight lines 23, 24 to the two extremes at the frequencies f3, f4 from the second measurement.
  • the straight line 21 associated with the first measurement intersects both the straight line 23 and the straight line 24 associated with the second measurement.
  • the following method steps make it possible to provide additional information that enables or at least facilitates an assignment of the extremum at the frequency f3 or the extremum at the frequency f4 from the second measurement to the extremum at the frequency f1 from the first measurement, or whether an intersection of the Straight line 21 with the straight line 23 or an intersection of the straight line 21 with the straight line 24 is to be evaluated.
  • the chirp or frequency chirp is determined from the difference signals of the first measurement.
  • the method steps are preferably used, which are already described above.
  • a linear combination of two theoretical spectra A is adapted to the measured spectra from the first measurement (40).
  • the phase in the frequency domain can be determined explicitly for each spectrum A.
  • Suitable implementations (41) determine the value of the second derivative of the phase in the frequency space after the frequency at the respective extremum directly from the complex amplitude of the respective spectrum by utilizing the relationships (4) to (9) described above.
  • the size thus obtained indicates the chirp.
  • the respective value of the chirp is determined.
  • the chirp is determined for each extremum of a spectrum from the second measurement (42, 43).
  • a next step (44) the respective chirps from the first measurement are compared with the chirps from the second measurement. It has already been stated previously that the chirp is substantially proportional to the relative velocity v and the modulation rate s. Between the first measurement and the second measurement, it is assumed that the relative velocity v of an object does not change. Accordingly, the quotient of the frequency chirp ⁇ and the modulation rate s is a fixed one. Thus, pairs of chirps are searched for from the first and second measurements that are identical or nearly identical, divided by the modulation rate of the first and second measurements, respectively. A deviation of the quotients within a tolerance threshold is considered identical.
  • Each chirp is determined from a spectrum A which has exactly one extremum at a frequency f d .
  • the chirp can thus be assigned in each case to an extremum in a measured spectrum.
  • the associated pair is determined from the frequency associated with the first chirp and the frequency associated with the second chirp (45). From the pair of frequencies, using the relationship (1), the distance and / or the relative speed to an object is determined (46).
  • the time sequence of the individual process steps is not limited by the sequence described. Expediently, the determination of the chirp or chirp signals takes place in separate data processing devices, so that a parallel processing for detecting and determining the difference signals is possible.
  • the proportion of the acceleration a in the chirp is taken into account.
  • the contribution of the acceleration to the chirp remains unchanged, the relative speed changes, as can be seen from the relation (3).
  • a linear dependence of possible accelerations and relative speeds to a measured chirp results. These dependencies can both be plotted as straight lines in a graph with acceleration and relative velocity as axes. The intersection of the two straight lines then gives the actual acceleration and the actual relative speed of the object. In the case of several objects, ambiguities arise analogously to FIG. 8, since it is not clear in advance which intersections of the straight lines are to be taken into account.
  • An apparatus for carrying out the aforementioned embodiment provides, according to FIG. 9, at least one transmitting and one receiving device 50 for radar high-frequency signals.
  • a mixer device 51 determines the difference signals from the currently transmitted and the currently received signals.
  • a data processing device 52 determines from the spectrum the second derivative of the phase after the frequency.
  • the present invention has been described in terms of a preferred embodiment, it is not limited thereto. In particular, it is not limited to the individual method steps for determining the chirp.
  • the chirp can also be obtained by simply differentiating the spectrum in the vicinity of the extrema, although the aforementioned method is preferred because of its higher quality.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben eines Radars, mit den folgenden Schritten: Bestimmen von ersten und zweiten Differenzsignalen aus einem erstes bzw. zweiten ausgesendeten frequenzmodulierten Signal und empfangenen, von einer Mehrzahl von Objekten reflektierten Anteilen des ersten bzw. zweiten ausgesendeten frequenzmodulierten Signals; Bestimmen von jeweils einem ersten bzw. zweiten Chirpsignal zu jedem ersten und zweiten Differenzsignal, wobei das erste Chirpsignal der zweifachen Ableitung der Phase des ersten bzw. zweiten Differenzsignals nach der Zeit entspricht; Zuordnen von einem der ersten Differenzsignale zu einem der zweiten Differenzsignale basierend auf einer Entsprechung des ersten Chirpsignals, das dem einen ersten Differenzsignal zugeordnet ist, zu dem zweiten Chirpsignal, das dem einen zweiten Differenzsignal zugeordnet ist; und Bestimmen von Abstand und/oder Relativgeschwindigkeit eines der Objekte basierend auf dem einen ersten Differenzsignal und dem einen dem ersten Differenzsignal zugeordneten zweiten Differenzsignal.

Description

Beschreibung
Titel
Verfahren zum Betreiben eines Radars und ein Radar
STAND DER TECHNIK
Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben eines Radars, insbesondere eines Radars für Fahrerassistenzsystem in einem Kraftfahrzeug, und ein Radar, welches das vorgenannte Verfahren durchführt.
Fahrerassistenzsysteme erleichtern das Führen eines Fahrzeuges in Alltagssituationen, wie z.B. beim Einparken, beim Fahren im Kolonnenverkehr, aber auch in Ausnahmesituationen, z.B. zur Vermeidung eines Unfalls. Die Fahrerassistenzsysteme benötigen hierzu zuverlässige Radarsysteme, die den Abstand zu einem Hindernis und gegebenenfalls dessen Relativ- geschwindigkeit zu dem Fahrzeug bestimmen.
Zweckmäßigerweise werden FMCW-Radars (frequency modulated continuous wave radar; frequenzmoduliertes Dauerstrich- Radar) verwendet. Das FMCW- Radar emittiert ein Ausgangssignal mit sich monoton ändernder Frequenz gemäß mehreren einstellbaren Modulati- onsraten. Die von einem potentiellen Hindernis reflektierten Anteile des emittierten Signals werden von dem Radar empfangen. Das momentan empfangene und das momentan emittierte Signal unterscheiden sich in ihrer Frequenz in Abhängigkeit der Laufzeit von einem emittierten Signal zu dem potentiellen Hindernis und der momentanen Modulationsrate der Frequenz des emittierten Signals. Eine Auswertungseinrichtung bestimmt aus der Differenz der Frequenzen die Laufzeit und somit die Entfernung zu dem potentiellen Hindernis.
Eine Frequenzänderung ergibt sich auch entsprechend dem Dopplereffekt bei einer Relativbewegung des Hindernisses zu dem Radar. Eine Auswertung dieser Frequenzverschiebung ermöglicht die Bestimmung der Relativgeschwindigkeit.
Da eine Frequenzverschiebung sowohl auf den Abstand als auch die Relativgeschwindigkeit zurückgeführt werden kann, ist eine einzelne Messung für diese beiden Größen nicht eindeu- tig. Es wird eine zweite Messung durchgeführt. Die Modulationsrate bei der zweiten Messung ist verschieden zu der Modulationsrate bei der ersten Messung. Eine Identifizierung des Beitrags von der Relativgeschwindigkeit zu der Frequenzverschiebung ist aufgrund der Unabhängigkeit von der Änderung der Modulationsrate der Frequenz des emittierten Signals, im Gegensatz zu den Signallaufzeitmessungen für den Abstand identifizierbar.
Das vorgenannte Verfahren erfordert, dass die erste Messung eindeutig der zweiten Messung zuordenbar ist. Solange nur ein Hindernis vorhanden ist, ist dies in trivialer Weise möglich. Jedoch ergeben sich erhebliche Schwierigkeiten, wenn Signale von mehreren Objekten in unterschiedlichen Entfernungen und/oder mit unterschiedlichen Relativgeschwindigkeiten empfangen werden. Eine Zuordnung von aufeinanderfolgenden Messungen zu einem Objekt erfordert aufwändige Suchalgorithmen, welche unter Anderem die Trajektorie eines Objekts verfolgen.
OFFENBARUNG DER ERFINDUNG
Das erfindungsgemäße Verfahren mit den Merkmalen des Patentanspruchs 1 schafft ein Verfahren zum Betreiben eines Radars, welches sich insbesondere eignet reflektierte Signale von einer Mehrzahl von Objekten einander zuzuweisen und die jeweiligen Abstände und/oder Relativgeschwindigkeiten zu den Objekten zu schätzen.
Hierzu sind folgende Verfahrensschritte vorgesehen:
- Bestimmen von ersten Differenzsignalen aus einem erstes ausgesendeten frequenzmodulierten Signal und empfangener, von einer Mehrzahl von Objekten reflek- tierter Anteile des ersten ausgesendeten frequenzmodulierten Signals;
- Bestimmen von jeweils einem ersten Chirpsignal zu jedem ersten Differenzsignal, wobei das erste Chirpsignal der zweifachen Ableitung der Phase des ersten Differenzsignals nach der Zeit entspricht;
- Bestimmen von zweiten Differenzsignalen aus einem zweiten ausgesendeten fre- quenzmoduliertes Signal und empfangener, von der Mehrzahl von Objekten reflektierter Anteile des zweiten ausgesendeten frequenzmodulierten Signals;
- Bestimmen von jeweils einem zweiten Chirpsignal zu jedem zweiten Differenzsignal, wobei das zweite Chirpsignal der zweifachen Ableitung der Phase des zweiten Differenzsignals nach der Zeit entspricht; - Zuordnen von einem der ersten Differenzsignale zu einem der zweiten Differenzsignale basierend auf einer Entsprechung des ersten Chirpsignal, das dem einen ersten Differenzsignal zugeordnet ist, zu dem zweiten Chirpsignal, das dem einen zweiten Differenzsignal zugeordnet ist; und
- Bestimmen von Abstand und/oder Relativgeschwindigkeit eines der Objekte basierend auf dem einen ersten Differenzsignal und dem einen dem ersten Differenzsignal zugeordneten zweiten Differenzsignal.
Die Phase eines Signals beschreibt den zeitlichen Verlauf der Amplitude. Die zeitliche Entwicklung der Phase wird herkömmlich in mehrere Anteile gemäß ihrer Zeitabhängigkeit unterteilt. Die Frequenz beschreibt die zeitliche Änderung der Phase, wobei diese Änderung selbst über die Zeit konstant ist. Der Frequenzchirp oder kurz Chirp beschreibt die Änderungen der Phase, wobei sich die Änderung selbst ebenfalls über die Zeit kontinuierlich ändert. Durch eine zweifache Ableitung, d.h. zweifaches Differenzieren, der Phase nach der Zeit erhält man eine dem Chirp proportionale Größe.
In der Einleitung ist diskutiert, dass eine Zuordnung der ersten Differenzsignale aus einer ersten Messung zu den zweiten Differenzsignalen aus einer zweiten Messung notwendig ist, um aus den beiden Differenzsignalen den Abstand und gegebenenfalls die Relativgeschwindigkeit zu bestimmen. Es wurde erkannt, dass eine solche Zuordnung durch einen Vergleich des Chirps eines ersten Differenzsignals aus der ersten Messung mit den Chirps jedes zwei- ten Differenzsignals aus den zweiten Messungen erfolgen kann. Der Chirp weist eine gegenüber der Frequenz andere nichttriviale Abhängigkeit von dem Abstand, der Relativgeschwindigkeit und der verwendeten Modulationsrate auf. Somit ist in dem Chirp eine zusätzliche weitere Information enthalten, die zur Auswertung heranziehbar ist.
Eine Ausgestaltung sieht vor, dass das Bestimmen des ersten und/oder des zweiten Chirpsignals folgende Schritte umfasst: Ermitteln eines komplexen Spektrums des Differenzsignals;
- Anpassen eines jeweils eines theoretischen komplexen Spektrums an jedes Extrema des komplexen Spektrums; - Bestimmen einer Phase des Spektrum gemäß
Figure imgf000005_0001
- wobei Im(A) den Imaginärteil und Re(A) den Realteil des angepassten Spektrums bezeichnet; und
- Bestimmen des ersten und/oder des zweiten Chirpsignals als den Wert der zweifa- chen Ableitung der Phase nach der Frequenz bei der Frequenz an der das Spektrum das Extremum annimmt. Das theoretische Spektrum kann durch eine Fourier-Transformierte des Differenzsignals bestimmt werden.
Eine Ausgestaltung sieht vor, dass das erste frequenzmodulierte Signal eine erste Modulationsrate und das zweite frequenzmodulierte Signal eine zweite Modulationsrate aufweist und die erste Modulationsrate und die zweite Modulationsrate verschieden sind.
Eine Ausgestaltung sieht vor, dass eine erstes Chirpsignal einem zweiten Chirpsignal ent- spricht, wenn der Quotient des ersten Chirpsignals durch die erste Modulationsrate sich von dem Quotient des zweiten Chirpsignals durch die zweite Modulationsrate um nicht mehr als einen vorgegebenen Schwellwert unterscheidet. Diese Verfahren eignet sich insbesondere, wenn angenommen werden kann, dass die auftretenden Beschleunigungswerte gering sind.
Eine Ausgestaltung sieht vor, dass aus den Frequenzen ersten und zweiten Differenzsignalen ein erster Werteraum potentiell eingenommener Geschwindigkeiten eines Objekts bestimmt werden und aus den ersten und zweiten Chirpsignalen ein zweiter Werteraum potentiell eingenommener Geschwindigkeiten des Objekts bestimmt werden und das Objekt als mit der Geschwindigkeit bestimmt wird, die in beiden Werteräumen enthalten ist. Einführend ist beschrieben, dass aus den Frequenzen der ersten und zweiten Differenzsignale keine eindeutige Aussage über die Geschwindigkeit eines Objekts getroffen werden kann, wenn mehr als ein erstes Differenzsignal aufgrund mehrerer Objekte auftritt. Dennoch schränkt eine entsprechende Untersuchung die Zahl möglicher Geschwindigkeiten auf einen ersten Werteraum ein. In Analogie ergibt sich dieselbe Problematik der Nichteindeutigkeit bei der Auswertung von Chirpsignalen. Auch diese sind bei mehreren Objekten a priori nicht eindeutig aus den ersten und zweiten Messungen einander zuordbar. Aber eine Auswertung der Chirpsignale schränkt auch die Zahl möglicher Geschwindigkeiten auf einen zweiten Werteraum ein. Da die Abhängigkeit der Chirpsignale von der Geschwindigkeit und den Frequenzen der Differenzsignale verschieden ist, ist die Schnittmenge der beiden Werteräume klein, in den meisten Fällen umfasst die Schnittmenge nur die tatsächlich eingenommen Geschwindigkeit.
KURZE BESCHREIBUNG DER ZEICHNUNGEN
Nachfolgend wird die vorliegende Erfindung anhand einer bevorzugten Ausführungsform und beiliegender Figuren beschrieben. In den Figuren zeigen: Fig. 1 schematische Darstellung einer beispielhaften Situation im
Straßenverkehr;
Fig. 2 emittierte Signale mit unterschiedlichen Modulationsraten;
Fig. 3 Illustration zur Bestimmung von Abstand und Geschwindigkeit mittels eines Radars nach dem Stand der Technik;
Fig. 4 Spektrum;
Fig. 5 Blockdiagramm einer Ausführungsform;
Fig. 6, 7 Spektren bei zwei reflektierenden Objekten;
Fig, 8 Graphik zur einer Problematik bei der Bestimmung von Abstand und
Geschwindigkeit bei zwei reflektierenden Objekten und
Fig. 9 Blockdiagramm einer Ausführungsform.
AUSFÜHRUNGSFORMEN DER ERFINDUNG
Figur 1 illustriert eine typische Situation im Straßenverkehr. Einem Fahrzeug 1 fährt ein Fahrzeug 2 voraus und seitlich am Straßenrand befindet sich ein Baum 3. Das vorausfahrende Fahrzeug 2 weist im Wesentlichen die gleiche Geschwindigkeit wie das Fahrzeug 1 auf, d.h. die Relativgeschwindigkeit ist nahezu 0. Der Abstand beträgt mehrere 10 m. Die Relativgeschwindigkeit des Fahrzeuges 1 zu dem stehenden Baum 3 entspricht der Geschwindigkeit, mit der der Fahrer des Fahrzeuges 1 fährt. Viele weitere Objekte mit unterschiedlichen Abständen und Relativgeschwindigkeiten bezüglich des Fahrzeuges 1 treten im Straßenverkehr auf, der hier beschriebene Baum 3 und das vorausfahrende Fahrzeug 2 sind rein exemplarisch zur Erläuterung der nachfolgend beschriebenen Ausführungsformen. 5a
Das Fahrzeug 1 weist ein FMCW-Radar 4 auf. Das Radar emittiert ein Ausgangsignal 5 in Richtung zu dem vorausfahrenden Fahrzeug 2 und dem Baum 3. Das vorausfahrende Fahrzeug 2 reflektiert einen Anteil des emittierten Ausgangssignals 5 in Richtung zu dem Radar 4. Das reflektierte Signal 6 wird von dem Radar 4 empfangen. Gleichermaßen ergibt sich ein reflektiertes Signal 7 von dem Baum, welches zu dem Radar 4 gerichtet ist.
Das FMCW-Radär moduliert die Frequenz f des emittierten Signals 5. Innerhalb eines Zeitabschnittes Tl, T2 wird die Frequenz f von einem Ausgangswert mit einer festen Modulationsrate geändert (vgl. Figur 2). Während der Laufzeit eines emittierten Signals 5 von dem
Radar 4 zu dem vorausfahrenden Fahrzeug 2 und durch die Reflektion als reflektiertes Signal 6 zurück zu dem Radar 4, hat sich in der Zwischenzeit die Frequenz des nun emittierten Signals 5 verändert, in dem vorliegenden Beispiel erhöht. Bei einer bekannten Modulationsrate der Frequenz, typischerweise einer konstanten Modulationsrate, kann somit aus dem Frequenzunterschied zwischen dem momentan emittierten Signal 5 und dem momentan empfangenen reflektierten Signal 6 der Abstand zu dem vorausfahrenden Fahrzeug 2 bestimmt werden.
Bei den obigen Ausführungen zur Bestimmung des Abstandes ist angenommen, dass das vorausfahrende Fahrzeug 2 eine Relativgeschwindigkeit mit dem Betrag 0, d.h. keine Relativgeschwindigkeit, zum Fahrzeug 1 aufweist. Der Baum 3 bewegt sich auf das Fahrzeug 1 zu. Aufgrund der Relativbewegung erfährt das reflektierte Signal 7 gegenüber dem emittierten Signal 5 eine Frequenzverschiebung, die als Dopplereffekt oder Dopplerverschiebung bekannt ist. Die Frequenzänderung ist in guter Näherung proportional zur Relativgeschwin- digkeit. Falls das Radar 4 die Frequenz des emittierten Signals 5 über die Zeit nicht variiert, kann aus der Frequenzverschiebung auf die Relativgeschwindigkeit geschlossen werden.
Im Regelfall weist das reflektierende Objekt, z.B. der Baum 3, eine Relativgeschwindigkeit auf und die Frequenz des emittierten Signals 5 wird über die Zeit variiert. Die Differenzfre- quenz fd des momentan empfangenen reflektierten Signals zu dem momentan emittierten Signal ergibt sich nach folgender Beziehung:
Figure imgf000009_0001
wobei c die Lichtgeschwindigkeit, s die Modulationsrate der Frequenz des emittierten Signals 5, fc die Frequenz des emittierten Signals 5 zum Zeitpunkt der Emission und v die Relativgeschwindigkeit bezeichnet. In guter Näherung kann fc durch die mittlere Frequenz des emittierten Signals ersetzt werden.
Aus der Beziehung (1) ist ersichtlich, dass bei einer bekannten mittleren Frequenz fc, einer bekannten Modulationsrate s und einer bestimmten Differenzfrequenz fd sich eine lineare Abhängigkeit zwischen möglichen Abständen d und möglichen Relativgeschwindigkeiten v eines reflektierenden Objekts ergibt. Diese Abhängigkeit lässt sich graphisch als eine Gerade Gl in einem Koordinatensystem mit der x-Achse gleich dem Abstand d und der y-Achse gleich der Geschwindigkeit v darstellen (Figur 3). Eine eindeutige Bestimmung des Abstandes d und eine eindeutige Bestimmung der Geschwindigkeit v wird durch eine zweite Mes- sung erreicht, bei der die Modulationsrate s geändert ist. In der graphischen Darstellung führt dies zu einer zweiten Gerade G2 mit einer zur ersten Gerade Gl geänderten Steigung. Der Schnittpunkt der beiden Geraden gibt graphisch den tatsächlichen Abstand d und die tatsächliche Relativgeschwindigkeit v an.
Für die Erläuterung der nachfolgend beschriebenen Ausführungsform eines Verfahrens zum Betreiben eines Radars werden zunächst erkannte Eigenschaften der Differenzsignale beschrieben, welche für das Verfahren nützlich sind und verwendet werden.
Die Phase des Differenzsignals weist eine Zeitabhängigkeit auf, die sich näherungsweise durch die Beziehung 2 darstellen lässt:
φ = φo + 2 π fd t + π ß t2, (2)
wobei φ0 eine konstante Phase, fd die Differenzfrequenz des momentan reflektierten Signals zu dem momentan emittieren Signal, ß den sogenannten Frequenzchirp und t die Zeit bezeichnet. Abhängigkeiten der Phase φ von Termen in dritter Ordnung der Zeit sind für die verwendeten FMCW-Radars im Straßenverkehr vernachlässigbar gering.
Der Frequenzchirp ß entspricht einer nicht-konstanten Änderung der Differenzfrequenz fd über die Zeit. Bei einem FMCW- Radar setzt sich der Frequenzchirp ß gemäß der Beziehung (3) zusammen:
Figure imgf000010_0001
Der Ausdruck ds/dt bezeichnet Nicht- Linearitäten der Modulationsrate. Unterschreitet die Nicht- Linearität der Modulationsrate im Betrag 2,5 1010 Hz/s2 ist der Term bei typischerweise auftretenden Abstände d, Geschwindigkeiten v und Beschleunigungen a vernachlässigbar für den Chirp ß.
Das Produkt aus der mittleren Emissionsfrequenz fc des FMCW-Radars und den im Straßenverkehr typisch auftretenden Beschleunigungen a, ist um mindestens eine Größenordnung geringer als das Produkt aus der Modulationsrate s und den typisch auftretenden Geschwindigkeiten v im Straßenverkehr. Die typischen mittleren Emissionsfrequenzen liegen im Be- reich von 7,65 1010 Hz und die typischen Modulationsraten s im Bereich von 5,0 1016 Hz/s. Typische Geschwindigkeiten v eines Fahrzeugs liegen im Bereich zwischen 10 und 50 m/s, während die Beschleunigungswerte a nur in Ausnahmefällen Werte von 5m/s2 erreichen. In guter Näherung ist der Frequenzchirp ß folglich nur von der Geschwindigkeit v und der Modulationsrate s abhängig.
Die Bestimmung des Chirps ß kann aus der zeitabhängigen Phase φ durch zweifaches Differenzieren, d.h. Ableiten, nach der Zeit ermittelt werden, wie aus Beziehung (2) ersichtlich. In den nachfolgend beschriebenen Ausführungsformen erweist es sich allerdings als zweckmäßig den Chirp ß gemäß dem nachfolgend beschriebenen Schritten zu bestimmen. Insbesondere erweist es sich als ausreichend eine dem Chirp ß proportionale Größe zu ermitteln. Zusammengefasst wird aufgezeigt, wie der Chirp ß oder eine ihm proportionale Größe durch zweifaches Ableiten nach der Frequenz aus einem Spektrum gewonnen wird.
Ein Spektrum entspricht der Fourier-Transformierten der Phase oder des Phasensignal. Falls das Phasensignal im Wesentlichen nur ein Extremum bei einer Frequenz fd aufweist kann das Spektrum durch folgende Beziehung angepasst werden:
Figure imgf000011_0001
Figure imgf000011_0002
Ψ = arctan (2 π ß σ 2) (6)
Figure imgf000011_0003
Die Parameter p, σ und ψ bezeichnen Parameter, die zum Anpassen eines theoretischen Spektrums nach der Beziehung (4) an ein reales Spektrum ermöglichen. Die Frequenzachse wird durch f, die Frequenz des Differenzsignals durch fd und der Chirp durch ß bezeichnet. Das konjugiert Komplexe des Spektrums A wird durch das Kürzel c.c. bezeichnet. Die Beziehungen (5), (6) und (7) geben Definitionen für die in dem Spektrum nach Beziehung (4) verwendeten Größen an.
Weist das Phasensignal oder Differenzsignal mehr als ein Extremum auf, wird eine Linearkombination von Spektren A gemäß Beziehung (4) angepasst. Jedem Extremum bei der Frequenz fd oder jedem Differenzsignal, das von verschiedenen Objekten herrührt, wird somit ein eigenes Spektrum A zugeordnet. Begrifflich wird für das Spektrum A eine Phase Φ eingeführt. Die Phase Φ gibt die Abhängigkeit des Spektrums von der Frequenzachse f an. Nachfolgend wird auf die Phase Φ als Phase Φ im Frequenzraum Bezug genommen. Die Phase Φ im Frequenzraum kann aus der Be- Ziehung (4) bestimmt werden, nachdem das theoretische Spektrum A an das gemessene Spektrum angepasst ist. Für die Phase Φ im Frequenzraum gilt:
Φ = arctan — — (8)
Rc(A)
Die Phase Φ im Frequenzraum ist abhängig von dem Frequenzchirp ß. Der Frequenzchirp ß führt zu einer Verbreiterung das Extremums des Spektrums A, welche durch den Parameter p vorgegeben sind. Da diese Verbreiterung im Bereich weniger Prozent liegt, ist sie vernachlässigbar.
Eine zu dem Frequenzchirp ß proportionale Größe wird durch zweifaches Ableiten der Phase Φ im Frequenzraum nach der Frequenz f ermittelt. Die Proportionalitätskonstante zwischen der zweifachen Ableitung der Phase Φ im Frequenzraum nach der Frequenz f und dem Frequenzchirp ß ist im Wesentlichen nur von einer gewählten Fensterfunktion zum Ermitteln der Fourier-Transformierten, z.B. einer Gaußschen Fensterfunktion, und bei einer diskreten Fou- rier-Transformation von der Auflösung des Frequenzraums abhängig.
Das näherungsweise Bestimmen der zweifachen Ableitung der Phase Φ im Frequenzraum bei der Frequenz fd im Extremum kann wie folgt erfolgen:
Figure imgf000012_0001
dabei bezeichnet Φa die Phase bei der Frequenz fa, Φb die Phase bei der Frequenz fb und es gilt fa ist kleiner die Frequenz fd und die Frequenz fd ist kleiner fb, vergleiche das Spektrum in Figur 4.
Das Verfahren zum Bestimmen des Chirps oder einer dem Chirp proportionalen Größe um- fasst folgende Schritte:
- Anpassen einer Linearkombination von Spektren A gemäß der Beziehung (4); Ermitteln der Phase Φ im Frequenzraum aus den jeweiligen Spektren; und - Bestimmen einer dem Chirp proportionale Größe als den Wert der zweifachen Ableitung der Phase Φ im Frequenzraum bei der Frequenz fd, bei der das Spektrum ein Extrem um aufweist.
Eine Ausführungsform der vorliegenden Erfindung wird beispielhaft anhand der in Figur 1 dargestellten Situation erläutert und ist als Flussdiagramm in Figur 5 schematisch illustriert.
Zunächst wird eine erste Modulationsrate s festgelegt (30). Das FMCW-Radar emittiert Signale 5 für eine Zeitspanne, in welcher die Frequenz des emittierten Signals entsprechend der ersten Modulationsrate s variiert wird (31). Das Radar 4 empfängt zwei reflektierte Signale 6, 7. Das FMCW-Radar 4 mischt die empfangenen reflektierten Signale 6, 7 mit dem momentan emittierten Signal 5. Aus den entstehenden Mischprodukten wird alleinig das Differenzsignal zwischen dem momentan emittierten Signal und den momentan empfangenen reflektierten Signalen 6, 7 ermittelt, gegebenenfalls sind die Mischer derart eingerichtet, dass nur das Differenzsignal entsteht. Die jeweiligen sich ergebenden Differenzfrequenzen fd der beiden reflektierten Signale 6, 7 zu den momentan emittierten Signalen sind beispielhaft in Figur 6 als Frequenz fl und Frequenz f2 angegeben. Typischerweise unterscheiden sich die beiden Frequenzen fl, f2.
Zu einem späteren Zeitpunkt, typischerweise innerhalb einer oder weniger Millisekunden, wird eine zweite Messung durchgeführt, dazu wird die Modulationsrate s der Frequenz des emittierten Signals 5 geändert (35). Die Modulationsrate s der ersten Messung und die Modulationsrate s der zweiten Messung unterscheiden sich. Das sich nun ergebende Spektrum aus den Differenzsignalen kann beispielsweise wie in Figur 7 illustriert aussehen. Das Spekt- rum weist wiederum zwei Peaks oder Extrema, diesmal bei den Frequenzen f3, f4 auf. Aus den beiden Spektren ist jedoch a priori nicht erkennbar, ob das Extremum bei der Frequenz fl und das Extremum bei der Frequenz f3 reflektierten Signalen 7 desselben Objekts, z.B. dem Baum 3 oder dem vorausfahrenden Fahrzeug 2, oder die Extrema bei den Frequenzen fl und f4 den reflektierten Signalen 7 desselben Objekts zuzuordnen sind.
Die Abhängigkeit möglicher Abstände d von möglichen Relativgeschwindigkeiten v lässt sich für jedes der Extrema bestimmen und ist beispielhaft in Figur 8 graphisch dargestellt. Die beiden Geraden 21, 22 entsprechen beispielhaft den Extrema fl, f2 zu der ersten Messung und die Geraden 23, 24 den beiden Extrema bei den Frequenzenf3, f4 aus der zweiten Mes- sung. Die Gerade 21 zugeordnet zu der ersten Messung schneidet sowohl die Gerade 23 als auch die Gerade 24, die der zweiten Messung zugeordnet sind. Ohne weitere Kenntnisse ergibt sich somit kein eindeutiges Ergebnis, welchen Abstand d und welche Relativge- schwindigkeit v ein Objekt aufweist, von dem das reflektierte Signal mit der Frequenz fl in der ersten Messung herrührt. Gleiches gilt für das weitere Objekt, das in der ersten Messung durch das Extremum bei der Messung f2 identifiziert wird.
Die nachfolgenden Verfahrensschritte ermöglichen die Bereitstellung einer Zusatzinformation, die eine Zuordnung des Extremums bei der Frequenz f3 oder des Extremums bei der Frequenz f4 aus der zweiten Messung zu dem Extremum bei der Frequenz fl aus der ersten Messung ermöglicht oder zumindest erleichtert, respektive ob ein Schnittpunkt der Gerade 21 mit der Geraden 23 oder ein Schnittpunkt der Geraden 21 mit der Geraden 24 auszuwer- ten ist.
Aus den Differenzsignalen der ersten Messung wird der Chirp oder Frequenzchirp bestimmt. Hierzu werden vorzugsweise die Verfahrenschritte angewandt, welche zuvor bereits beschrieben sind. In dem beschriebenen Beispiel wird eine Linearkombination aus zwei theore- tischen Spektren A an die gemessenen Spektren aus der ersten Messung angepasst (40). Die Phase im Frequenzraum kann für jedes Spektrum A explizit bestimmt werden. Geeignete Implementierungen (41) bestimmen den Wert der zweiten Ableitung der Phase im Frequenzraum nach der Frequenz bei dem jeweiligen Extremum unmittelbar aus der komplexen Amplitude des jeweiligen Spektrums unter Ausnützung der obig beschriebenen Beziehungen (4) bis (9). Die somit erhaltene Größe gibt den Chirp an. Für jedes Objekt und sein sich daraus ergebendes Differenzsignal, welches durch ein Spektrum A angepasst wird, wird der jeweilige Wert des Chirps ermittelt. Vorzugsweise wird nur eine dem Chirp proportionale Größe bestimmt.
Analog wird der Chirp zu jedem Extremum eines Spektrums aus der zweiten Messung ermittelt (42, 43).
In einem nächsten Schritt (44) werden die jeweiligen Chirps aus der ersten Messung mit den Chirps aus der zweiten Messung miteinander verglichen. Zuvor ist bereits ausgeführt wor- den, dass der Chirp im Wesentlichen proportional zu der Relativgeschwindigkeit v und der Modulationsrate s ist. Zwischen der ersten Messung und der zweiten Messung wird davon ausgegangen, dass sich die Relativgeschwindigkeit v eines Objekts nicht ändert. Entsprechend ist der Quotient aus dem Frequenzchirp ß und der Modulationsrate s eine Unveränderliche. Es werden somit Paare von Chirps aus der ersten und der zweiten Messung gesucht, die geteilt durch die Modulationsrate der ersten bzw. zweiten Messung identisch oder nahezu identisch sind. Eine Abweichung der Quotienten innerhalb einer Toleranzschwelle wird als identisch erachtet. Jeder Chirp wird aus einem Spektrum A ermittelt, das genau ein Extremum bei einer Frequenz fd aufweist. Der Chirp kann somit jeweils einem Extremum in einem gemessenen Spektrum zugeordnet werden. Zu einem Paar aus einem ersten Chirp aus einer ersten Mes- sung und einem zweiten Chirp aus einer zweiten Messung wird das zugehörige Paar aus der dem ersten Chirp zugehörigen Frequenz und der dem zweiten Chirp zugehörigen Frequenz ermittelt (45). Aus dem Paar von Frequenzen wird unter Ausnützung der Beziehung (1) der Abstand und/oder die Relativgeschwindigkeit zu einem Objekt bestimmt (46).
Die zeitliche Abfolge der einzelnen Verfahrenschritte ist nicht durch die beschriebene Abfolge limitiert. Zweckmäßigerweise erfolgt das Ermitteln der Chirps oder Chirpsignale in getrennten Datenverarbeitungseinrichtungen, so dass eine parallele Verarbeitung zum Erfassen und Bestimmen der Differenzsignale möglich ist.
In einer weiteren Ausgestaltung wird der Anteil der Beschleunigung a in dem Chirp berücksichtigt. Bei zwei aufeinanderfolgenden Messungen mit unterschiedlicher Modulationsrate bleibt der Beitrag der Beschleunigung zu dem Chirp unverändert, die der Relativgeschwindigkeit ändert sich, wie aus der Beziehung (3) ersichtlich. Es ergeben sich somit für die erste und die zweite Messung eine lineare Abhängigkeit möglicher Beschleunigungen und Relativ- geschwindigkeiten zu einem gemessenen Chirp. Diese Abhängigkeiten können beide als Geraden in einem Diagramm mit der Beschleunigung und der Relativgeschwindigkeit als Achsen aufgetragen werden. Der Schnittpunkt der beiden Geraden ergibt dann die tatsächliche Beschleunigung und die tatsächliche Relativgeschwindigkeit des Objekts. Bei mehreren Objekten ergeben sich Mehrdeutigkeiten analog zu Figur 8, da nicht vorab ersichtlich ist, welche Schnittpunkte der Geraden zu berücksichtigen sind.
Aus der Abhängigkeit von Relativgeschwindigkeit und Abstand festgelegt durch die gemessenen Differenzfrequenzen (Beziehung 2) aus den ersten und zweiten Messungen ergeben sich Schnittpunkte im Lösungsraum. Hierdurch werden zumindest die möglicherweise einge- nommenen Geschwindigkeiten auf eine endliche Zahl eingeschränkt. Aus der Abhängigkeit von Relativgeschwindigkeit und Beschleunigung festgelegt durch die bestimmten Chirps (Beziehung 3) aus den ersten und zweiten Messungen ergeben sich Schnittpunkte im Lösungsraum. Hierdurch werden ebenfalls die möglicherweise eingenommenen Geschwindigkeiten eingeschränkt. Eine Suche nach Werten für Geschwindigkeiten, die in beiden Lö- sungsräumen noch enthalten sind, ermöglichen die Geschwindigkeit weiter einzuschränken oder gegebenenfalls genau zu bestimmen. 13
Eine Vorrichtung zum Durchführen der vorgenannten Ausführungsform sieht gemäß Fig. 9 zumindest eine Sende und eine Empfangseinrichtung 50 für Radar-Hochfrequenzsignale vor. Eine Mischereinrichtung 51 ermittelt aus dem momentan gesendeten und den momentan empfangenen Signalen die Differenzsignale. Eine Datenverarbeitungseinrichtung 52 ermittelt aus dem Spektrum die zweite Ableitung der Phase nach der Frequenz.
Obwohl die vorliegende Erfindung anhand einer bevorzugten Ausfiihrungsform beschrieben ist, ist sie nicht darauf beschränkt. Insbesondere ist sie nicht auf die einzelnen Verfahrensschritte zum Ermitteln des Chirps beschränkt. Der Chirp kann auch durch einfaches Differenzieren des Spektrums in der Nähe der Extrema gewonnen werden, auch wenn das vorgenannte Verfahren wegen seiner höheren Güte bevorzugt wird.

Claims

Ansprüche
1. Verfahren zum Betreiben eines Radars, insbesondere eines Radars für ein Fahrerassistenzsystem in einem Kraftfahrzeug, mit den folgenden Schritten:
Bestimmen von ersten Differenzsignalen aus einem erstes ausgesendeten frequenzmodulierten Signal und empfangener, von einer Mehrzahl von Objekten reflektierter Anteile des ersten ausgesendeten frequenzmodulierten Signals;
Bestimmen von jeweils einem ersten Chirpsignal zu jedem ersten Differenzsignal, wo- bei das erste Chirpsignal der zweifachen Ableitung der Phase des ersten Differenzsignals nach der Zeit entspricht;
Bestimmen von zweiten Differenzsignalen aus einem zweiten ausgesendeten frequenzmoduliertes Signal und empfangener, von der Mehrzahl von Objekten reflektier- ter Anteile des zweiten ausgesendeten frequenzmodulierten Signals;
Bestimmen von jeweils einem zweiten Chirpsignal zu jedem zweiten Differenzsignal, wobei das zweite Chirpsignal der zweifachen Ableitung der Phase des zweiten Differenzsignals nach der Zeit entspricht;
Zuordnen von einem der ersten Differenzsignale zu einem der zweiten Differenzsignale basierend auf einer Entsprechung des ersten Chirpsignal, das dem einen ersten Differenzsignal zugeordnet ist, zu dem zweiten Chirpsignal, das dem einen zweiten Differenzsignal zugeordnet ist; und
Bestimmen von Abstand und/oder Relativgeschwindigkeit eines der Objekte basierend auf dem einen ersten Differenzsignal und dem einen dem ersten Differenzsignal zugeordneten zweiten Differenzsignal.
2. Verfahren nach Anspruch 1, wobei das Bestimmen des ersten und/oder des zweiten Chirpsignals folgende Schritte um- fasst: Ermitteln eines komplexen Spektrums des Differenzsignals;
Anpassen eines jeweils eines theoretischen komplexen Spektrums an jedes Extrema des komplexen Spektrums;
Bestimmen einer Phase des Spektrum gemäß
Φ
Figure imgf000018_0001
wobei Im(A) den Imaginärteil und Re(A) den Realteil des angepassten Spektrums bezeichnet; und
Bestimmen des ersten und/oder des zweiten Chirpsignals als den Wert der zweifachen Ableitung der Phase nach der Frequenz bei der Frequenz an der das Spektrum das Extremum annimmt.
3. Verfahren nach Anspruch 2, wobei das theoretische Spektrum durch eine Fourier- Transformierte des Differenzsignals bestimmt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das erste frequenzmodulierte Signal eine erste Modulationsrate und das zweite frequenzmodulierte Signal eine zweite Modulationsrate aufweist und die erste Modulationsrate und die zweite Modulationsrate verschieden sind.
5. Verfahren nach Anspruch 4, wobei eine erstes Chirpsignal einem zweiten Chirpsignal entspricht, wenn der Quotient des ersten Chirpsignals durch die erste Modulationsrate sich von dem Quotient des zweiten Chirpsignals durch die zweite Modulationsrate um nicht mehr als einen vorgegebenen Schwellwert unterscheidet.
6. Verfahren nach Anspruch 1, wobei aus den Frequenzen der ersten und zweiten Differenzsignale ein erster Werteraum potentiell eingenommener Geschwindigkeiten eines Objekts bestimmt werden und aus den ersten und zweiten Chirpsignalen ein zweiter Werteraum potentiell eingenommener Geschwindigkeiten des Objekts bestimmt werden und das Objekt als mit der Geschwindigkeit bestimmt wird, die in beiden Werte- räumen enthalten ist.
PCT/EP2007/063305 2006-12-28 2007-12-04 Verfahren zum betreiben eines radars und ein radar WO2008080744A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07847804A EP2126603B1 (de) 2006-12-28 2007-12-04 FMCW-Radarverfahren mit Auswertung der Phase der Differenzsignale
AT07847804T ATE475107T1 (de) 2006-12-28 2007-12-04 Fmcw-radarverfahren mit auswertung der phase der differenzsignale
DE502007004526T DE502007004526D1 (de) 2006-12-28 2007-12-04 FMCW-Radarverfahren mit Auswertung der Phase der Differenzsignale
US12/521,395 US8378882B2 (en) 2006-12-28 2007-12-04 Method for operating a radar and radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006061670.7 2006-12-28
DE102006061670A DE102006061670A1 (de) 2006-12-28 2006-12-28 Verfahren zum Betreiben eines Radars und ein Radar

Publications (1)

Publication Number Publication Date
WO2008080744A1 true WO2008080744A1 (de) 2008-07-10

Family

ID=39102964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/063305 WO2008080744A1 (de) 2006-12-28 2007-12-04 Verfahren zum betreiben eines radars und ein radar

Country Status (6)

Country Link
US (1) US8378882B2 (de)
EP (1) EP2126603B1 (de)
CN (1) CN101573633A (de)
AT (1) ATE475107T1 (de)
DE (2) DE102006061670A1 (de)
WO (1) WO2008080744A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221038A (zh) * 2010-09-27 2013-07-24 巴斯夫欧洲公司 酸性活性成分的保护涂层

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8026843B2 (en) * 2008-01-31 2011-09-27 Infineon Technologies Ag Radar methods and systems using ramp sequences
JP2011137763A (ja) * 2009-12-28 2011-07-14 Fujitsu Optical Components Ltd チャープ測定器、チャープ測定プログラム及びチャープ測定方法
DE102012212888A1 (de) * 2012-07-23 2014-01-23 Robert Bosch Gmbh Detektion von Radarobjekten mit einem Radarsensor eines Kraftfahrzeugs
DE102013213346A1 (de) * 2013-07-08 2015-01-08 Vega Grieshaber Kg Bestimmung von Pegel und Fließgeschwindigkeit eines Mediums
US9383442B2 (en) * 2014-05-12 2016-07-05 Autoliv Asp, Inc. Radar system and method for determining range, relative velocity and bearing of an object using continuous-wave and chirp signals
US9829566B2 (en) * 2014-11-25 2017-11-28 Texas Instruments Incorporated Controlling radar transmission to enable interference mitigation
KR101760907B1 (ko) 2015-11-20 2017-07-24 주식회사 만도 차량용 레이더 장치 및 그의 타겟 측정 방법
RU2654215C1 (ru) * 2017-08-07 2018-05-17 ООО предприятие "КОНТАКТ-1" Способ измерения расстояния радиодальномером с частотной модуляцией
JP7203822B2 (ja) * 2018-03-19 2023-01-13 日立Astemo株式会社 レーダ装置
CN110531358B (zh) * 2018-05-25 2023-07-18 华为技术有限公司 信息测量方法及信息测量装置
FR3083620B1 (fr) * 2018-07-05 2020-06-12 Aptiv Technologies Limited Dispositif radar pour vehicule automobile et methode de controle du dispositif
US11885874B2 (en) * 2018-12-19 2024-01-30 Semiconductor Components Industries, Llc Acoustic distance measuring circuit and method for low frequency modulated (LFM) chirp signals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651540A1 (de) 1995-12-11 1997-06-12 Denso Corp FMCW-Radarsystem zur Erfassung der Entfernung, der relativen Geschwindigkeit und des Azimuts eines Ziels
DE102004047087A1 (de) 2004-09-29 2006-03-30 Robert Bosch Gmbh Verfahren zur Objektverifaktion in Radarsystemen für Kraftfahrzeuge
DE102005012945A1 (de) 2005-03-21 2006-09-28 Robert Bosch Gmbh Verfahren und Vorrichtung zu Abstands- und Relativgeschwindigkeitsmessung mehrerer Objekte

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042928A (en) * 1974-03-22 1977-08-16 Esl Incorporated Technique of characterizing the nature of a radiation path transfer function by a few constants
CA2111807C (en) * 1992-12-24 1999-08-17 Hitoshi Takai Data transmitting and receiving apparatus
CA2086704C (en) * 1993-01-05 2002-06-04 Robert J. Inkol Method for evaluating similarity of signals having a carrier frequency offset
US5748891A (en) * 1994-07-22 1998-05-05 Aether Wire & Location Spread spectrum localizers
GB9602250D0 (en) * 1996-02-05 1996-04-03 Secr Defence Collision warning system
FR2760536B1 (fr) * 1997-03-04 1999-05-28 Thomson Csf Procede et dispositif de detection radar a modulation de frequence a onde continue presentant une levee d'ambiguite entre la distance et la vitesse
US6011514A (en) * 1998-10-26 2000-01-04 The United States Of America As Represented By The Secretary Of The Navy Means for extracting phase information for radio frequency direction of arrival
US6577269B2 (en) * 2000-08-16 2003-06-10 Raytheon Company Radar detection method and apparatus
EP1870730A3 (de) * 2000-08-16 2011-07-20 Valeo Radar Systems, Inc. Radarsysteme und -verfahren für Kraftfahrzeuge
DE10050278B4 (de) * 2000-10-10 2005-06-02 S.M.S., Smart Microwave Sensors Gmbh Verfahren und Vorrichtung zur Bestimmung von Abstand und Relativgeschwindigkeit eines entfernten Objektes
JP2003028951A (ja) * 2001-07-11 2003-01-29 Fujitsu Ten Ltd レーダ装置
US6781541B1 (en) * 2003-07-30 2004-08-24 Raytheon Company Estimation and correction of phase for focusing search mode SAR images formed by range migration algorithm

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651540A1 (de) 1995-12-11 1997-06-12 Denso Corp FMCW-Radarsystem zur Erfassung der Entfernung, der relativen Geschwindigkeit und des Azimuts eines Ziels
DE102004047087A1 (de) 2004-09-29 2006-03-30 Robert Bosch Gmbh Verfahren zur Objektverifaktion in Radarsystemen für Kraftfahrzeuge
DE102005012945A1 (de) 2005-03-21 2006-09-28 Robert Bosch Gmbh Verfahren und Vorrichtung zu Abstands- und Relativgeschwindigkeitsmessung mehrerer Objekte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103221038A (zh) * 2010-09-27 2013-07-24 巴斯夫欧洲公司 酸性活性成分的保护涂层

Also Published As

Publication number Publication date
US20110037641A1 (en) 2011-02-17
EP2126603A1 (de) 2009-12-02
DE102006061670A1 (de) 2008-07-03
EP2126603B1 (de) 2010-07-21
DE502007004526D1 (de) 2010-09-02
CN101573633A (zh) 2009-11-04
US8378882B2 (en) 2013-02-19
ATE475107T1 (de) 2010-08-15

Similar Documents

Publication Publication Date Title
EP2126603B1 (de) FMCW-Radarverfahren mit Auswertung der Phase der Differenzsignale
EP0727051B1 (de) Radargerät und verfahren zu seinem betrieb
DE102018102816B3 (de) Radar mit phasenkorrektur
EP3538922B1 (de) Radarsensor für kraftfahrzeuge
EP1864155B1 (de) Verfahren und vorrichtung zur abstands- und relativgeschwindigkeitsmessung mehrerer objekte
EP0677172B1 (de) Computerisiertes radarverfahren zur messung von abständen und relativgeschwindigkeiten zwischen einem fahrzeug und vor ihm befindlichen hindernissen
DE3028076C2 (de) Radargerät für ein Fahrzeug
EP1929331B1 (de) Kraftfahrzeug-radarverfahren und -radarsystem
EP1761800B1 (de) Radarsensor und verfahren zur auswertung von objekten
EP1043601A2 (de) Radarverfahren zur Messung von Abständen und Relativgeschwindigkeiten zwischen einem Fahrzeug und einem oder mehreren Hindernissen
EP1258708B1 (de) Verfahren und Vorrichtung für die Bestimmung von Offsetwerten durch ein Histogrammverfahren
DE102007043535A1 (de) FMCW-Radarortungsvorrichtung und entsprechendes FMCW-Radarortungsverfahren
DE102014009650A1 (de) Verfahren und Vorrichtung zum Erfassen der Umgebung auf der Grundlage von frequenzmoduliertem Dauerstrichradar
EP2417476A1 (de) Fmcw-radarsensor und verfahren zum frequenzmatching
DE102016222776A1 (de) Radarvorrichtung für Fahrzeuge und Zielbestimmungsverfahren für diese
DE19754220B4 (de) Verfahren und Vorrichtung zur Erkennung einer bevorstehenden oder möglichen Kollision
DE102009045677A1 (de) FMCW-Radarsensor für Kraftfahrzeuge
DE102014116165A1 (de) Verfahren zur Detektion einer Interferenz in einem Empfangssignal eines Radarsensors eines Kraftfahrzeugs, Recheneinrichtung, Fahrerassistenzsystem, Kraftfahrzeug sowie Computerprogrammprodukt
EP2141510B1 (de) Betriebsverfahren für ein Radargerät eines Fahrzeugs, in dem eine frequenzmodulierte Frequenzumtastung verwendet wird
DE19727288A1 (de) Verfahren zur Abstandsmessung mittels eines FMCW-Radarsensors
EP3223033A1 (de) Verfahren zum bestimmen eines rauschpegels eines empfangssignals in einem kraftfahrzeug-sensor
DE102018115931B4 (de) Abstandsbestimmung mit einer Mehrzahl Ultraschallsensoren
DE1801270C1 (de) Puls-Doppler-Radarverfahren und -geraet mit Sendefrequenzaenderung zur eindeutigen Objektgeschwindigkeitsbestimmung
DE112021006774T5 (de) Radarvorrichtung und fahrzeuginterne vorrichtung mit radarvorrichtung
DE102022209859A1 (de) Verfahren zum Fokussieren der Radarerfassung für eine Relativbewegung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780048565.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07847804

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007847804

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12521395

Country of ref document: US